Buku pendukung penyelesaian skripsi mahasiswa

PANDUAN PRAKTIKUM STATISTIK TERAPAN UNTUK SKRIPSI PENDIDIKAN

dengan aplikasi SPSS versi 22

Jurusan Pendidikan IPA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI YOGYAKARTA 2017

DAFTAR ISI

HALAMAN S.	AMPUL	i
DAFTAR ISI .		ii
Praktikum 1.	Statistik Deskriptif	1
Praktikum 2.	Uji Prasyarat	10
Praktikum 3.	Statistik Parametrik I	17
	A. One Sample T Test	
	B. Independent Sample T-Test	
Praktikum 4.	Statistik Parametrik II	25
	A. Paired T Test	
	B. Anova	
Praktikum 5.	Statistik Nonparametrik I	36
	A. One Sample Test (Uji Chi Kuadrat)	
	B. Two Independent Samples Test (Uji Mann Whitney)	
Praktikum 6.	Statistik Nonparametrik II	43
	A. Two Related Samples Test (Uji Wilcoxon)	
	B. K-Independent Samples Test (Uji Kruskal Wallis)	
Praktikum 7.	Korelasi	50
Praktikum 8.	Regresi	55
Praktikum 9.	Validitas Reliabilitas Instrumen Penelitian	61
DAFTAR PUS	ТАКА	72

PRAKTIKUM 1 STATISTIK DESKRIPTIF

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk menunjukan *mean, std. error of mean, median, std. deviation, variance, skewness, std. error of skewness, kurtosis, std. error of kurtosis, range, minimum, maximum, dan percentiles.*
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Pendahuluan

Statistik deskriptif merupakan statistik yang berhubungan dengan pengumpulan data, penyajian data (pembuatan tabel dan grafik), dan melakukan perhitungan statistik untuk mendeskripsikan atau menggambarkan data yang telah terkumpul, dan tanpa membuat kesimpulan yang berlaku umum (generalisasi). Bagian ini akan di bahas secara ringkas dan statistik deskriptif yang bersifat aplikatif yang mencakup:

- 1. Penyajian data.
- 2. Tabel distribusi frekuensi dan diagram statistik.
- 3. Ukuran gejala pusat dan ukuran letak.
- 4. Ukuran penyimpangan atau dispersi.
- 5. Kemiringan dan Kurtosis.

C. Aplikasi SPSS untuk Statistik Deskriptif

Berikut adalah data tinggi badan 25 orang mahasiswa (dalam centimeter) yang diambil secara

No	Tinggi	Gender
1	170.2	Pria
2	172.5	Pria
3	180.3	Pria
4	172.5	Pria
5	159.6	Wanita
6	168.5	Wanita
7	168.5	Pria
8	172.5	Pria
9	174.5	Pria
10	159.6	Wanita
11	170.4	Wanita
12	161.3	Wanita
13	172.5	Pria

No	Tinggi	Gender
14	170.4	Wanita
15	168.9	Wanita
16	168.9	Wanita
17	177.5	Wanita
18	174.5	Pria
19	186.6	Wanita
20	164.8	Wanita
21	170.4	Pria
22	168.9	Pria
23	164.8	Wanita
24	167.2	Wanita
25	167.2	Wanita

Gunakan aplikasi SPSS untuk mengolah data tersebut untuk mendapatkan gambaran umum dari data tersebut.

Langkah-langkahnya adalah sebagai berikut.

1. Mendefinisikan variabel.

a. Data di atas terdapat dua variabel (Tinggi Badan & Gender), maka akan definisikan 2
 variabel tersebut. Pada bagian bawah menu editor data, tekan tombol Variable View.
 Maka akan tampak tampilan berikut:

ta Un	titled1 [DataSet0] - IBM S	PSS Statistics [Data Editor		-				-) <mark>X</mark>
File	Edit	View	Data	Transform	Analyze	Direct <u>M</u> arketi	ng <u>G</u> raphs	Utilitie	s Add- <u>o</u> n	ns <u>W</u> indow	<u>H</u> elp		
					2			11		2	4 <u>3</u>		•
		Na	me	Туре	Width	Decimals	Label		Values	Missing	Columns	Align	- P
	1												4
	2												
	3												
	4												
	5	_											-
<u> </u>		1											
Data	a View	Variable	View										
								IBM SF	SS Statistic	cs Processor is	ready	Unicode:ON	

b. Kolom pertama merupakan tempat untuk mendefinisikan nama-nama variabel tersebut. Pada baris pertama-kolom pertama untuk mendefinisikan nama variabel ke-1, baris kedua-kolom pertama untuk mendefinisikan nama variabel ke-2. Kita ketikan "Tinggi" untuk variabel pertama dan "Gender" untuk variabel kedua.

- c. Untuk deklarasi Type variabel kita gunakan "Numeric" untuk variabel Tinggi dan Gender. Nantinya untuk variabel Gender kita pilih angka "1" untuk menandai gender Pria dan "2" untuk menandai gender Wanita.
- d. Untuk Width, biasanya standar SPSS untuk numeric adalah 8, kita biarkan saja angka 8 karena sudah mencukupi untuk keprluan kita.
- e. Untuk Decimals, untuk variabel Tinggi, karena datanya mengandung 1 angka di belakang koma, kita pilih 1. Sedangkan untuk gender karena bilangan bulat kita pilih angka 0. Untuk itu kita perlu mengganti default yang ada pada editor yaitu 2 dengan angka 1 dan 0 tersebut.
- f. Untuk sementara biarkan submenu-submenu yang lain seperti Values, Label, Missing dll. Seperti apa adanya. Tampilan akhir dapat dilihat seperti gambar berikut ini.

ta *Untit	tled1 [DataSet0] - IBM	SPSS Statistics D	Data Editor		_			_		
<u>F</u> ile E	dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze D)irect <u>M</u> arketi	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> n	is <u>W</u> indow	<u>H</u> elp		
2	🔁 H 🌒 🖛 🛥 📓 📥 🗐 🖪 🛯 🖬 📓 🖾 🚍 🚜 🌚 🔌										
		Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	P
1		Tinggi	Numeric	8	1		None	None	8	疆 Right	Unkn 🖆
2		Gender	Numeric	8	0		None	None	8	疆 Right	Unkn
3											
4											
5											-
L		1									
Data Vi	ew	/ariable View									
	IBM SPSS Statistics Processor is ready Unicode.ON										

g. Selanjutnya kita akan memasukan data yang kita punya dengan terlebih dahulu menekan tombol Data View.

ta *Unt	itled1	[DataSet0] - IBM :	SPSS Statistics	Data Editor	H >						- 0	×
<u>F</u> ile	Edit	<u>V</u> iew <u>D</u> ata	Transform	Analyze	Direct <u>M</u> arketin	g <u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	Help		
2				N	📥 🗐	P2	H 🍇	4	-		A _1⊶Î	Ø
12 :										Visible:	2 of 2 Va	riables
		Tinggi	Gender	var	var	var	var	var	var		var	
10		159.6	2									-
11		170.4	2									
12		161.3	2									
13		172.5	1									
14		170.4	2									
15		168.9	2									
16		168.9	2									
17		177.5	2									
18		174.5	1									
19		186.6	2									
20		164.8	2									
21		170.4	1									
22		168.9	1									
23		164.8	2									
24		167.2	2									
25		167.2	2									
26												-
		1										
Data V	/iew	Variable View										
						IBM SPSS	Statistics Pro	cessor is re	eady U	Unicode:(DN	

- 2. Langkah-langkah analisis sebagai berikut:
 - Dari baris menu, pilih menu Analyze, lalu pilih submenu Descriptive Statistics, lalu pilih lagi sumenu Frequencies (untuk menampilkan tabel frekuensi). Lalu akan tampil gambar berikut ini.

- b. Kolom Variables(s) harus diisi dengan jenis-jenis variabel apa yang ingin kita analisis.
 Karena ingin dibuat frekuensi dari variabel Tinggi, maka klik variabel Tinggi, kemudia klik tanda panah, maka variabel Tinggi akan berpindah ke kolom Vraible(s).
- c. Klik pilihan Statistics, maka akan tampil di layar gambar berikut:

Frequencies: Statistics	Central Tendency Mean Median Mode Sum				
-Dispersion	Values are group midpoints				
Old deviation Minimum					
Variance Maximum	Kutasia				
	<u>r</u> unosis				
Kange S.E. mean					
Continue Cancel Help					

- d. Pilihan Statistics meliputi berbagai ukuran untuk menggambarkan data, antara lain sebagai berikut:
 - a. PercentilesValues. Untuk keseragaman klik Quartiles dan Percentile(s). Kemudian pada kotak disamping kanan Percentiles ketik 10, lalu tekan Add. Sekali lagi ketik 90 pada kotak terdahulu, dan klik lagi tombol Add. Pengerjaan ini dimaksudkan untuk membuat nilai persentil pada 10 dan 90.
 - b. Dispersion atau penyebaran data. Untuk keseragaman, semua atau keenam jenis pengukuran Dispersion dipilih semua.

- c. Central Tendency atau pengukuran pusat data, untuk keseragaman pilih Mean dan Median.
- d. Distribution atau bentuk distribusi data. Untuk keseragaman, klik Skewness dan Kurtosis.

Frequencies: Statistics					
Percentile Values	Central Tendency				
☑ <u>Q</u> uartiles	✓ Mean				
Cut points for: 10 equal groups	✓ Median				
Percentile(s):	Mode				
Add 10.0	🗖 <u>S</u> um				
Change 90.0					
Remove					
	Values are group midpoints				
Dispersion	Distribution				
Std. deviation 📝 Minimum	✓ Skewness				
✓ Variance ✓ Maximum	Kurtosis				
Range S.E. mean					
Continue Cancel Help					

e. Pilihan Charts.

Menu Charts berkenaan dengan jenis grafik yang ingin kita pilih. Dari *Chart Type*, untuk keseragaman kita pilih Histogram. Lalu menu *With normal curve*-nya akan hidup, maka kita klik juga *With normal curve*. Lalu klik *Continue*.

Frequencies: Charts
Chart Type
© N <u>o</u> ne
◎ <u>B</u> ar charts
◎ <u>P</u> ie charts
Mistograms:
Show normal curve on histogram
Chart Values
● Erequencies ◎ Percentages
Continue Cancel Help

f. Setelah menu Format diklik, maka akan tampil gambar berikut:

Frequencies: Format	×					
Order by Ascending values Descending values	Multiple Variables © Compare variables © Organize output by variables					
 Asc<u>ending counts</u> Descending counts 	Suppress tables with many categories <u>Maximum number of categories</u> : 10					
Continue Cancel Help						

Pada submenu Order by (data output akan disusun seperti apa) kita seragamkan saja dengan memilih output akan disusun naik (dari data terkecil ke data terbesar). Untuk itu pilih Ascending values. Selanjutnya klik OK. Maka semua proses pengisian dan pengolahan data telah selesai, dan kita akan lihat hasilnya (outputnya) pada editor Output.

3. Output SPSS dan Analisisnya

Selanjutnya data yang telah kita olah tersebut akan kita lihat outputnya. Berikut ini adalah output dari *Descriptive*.

Tinggi		
Ν	Valid	25
	Missing	0
Mean	_	170.120
Std. Error of	f Mean	1.2066
Median		170.200
Std. Deviati	on	6.0328
Variance		36.394
Skewness		.572
Std. Error of	f Skewness	.464
Kurtosis		1.460
Std. Error of	f Kurtosis	.902
Range		27.0
Minimum		159.6
Maximum		186.6
Percentiles	10	160.620
	25	167.200
	50	170.200
	75	172.500
	90	178.620

Statistics

Output Bagian Pertama (Statistics)

 a. N atau jumlah data yang valid adalah 25 buah, sedangkan data yang hilang (missing) adalah nol. Ini artinya semua data bisa diproses

b. Mean atau rata-rata tinggi badan adalah 170,12 cm dengan standar error adalah 1,20655 cm. Penggunaan standar error of Mean adalah untuk memeriksa besar rata-rata populasi yang diperkirakan dari sampel. Untuk itu, dengan standar error of Mean tertentu dan pada tingkat kepercayaan 95% (SPSS sebagian besar menggunakan angka ini sebagai stanadar), rata-rata populasi tinggi badan menjadi:

Rata-rata Populasi = Rata-rata ± 2 standar error of Mean

 $= 170,12 \pm (2 \text{ x } 1,20655) \text{ cm}$

(Angka 2 digunakan karena tingkat kepercayaan 95%)

- c. Median atau titik tengah data jika semua data diurutkan dan dibagi 2 sama besar. Angka median 170,20 cm menunjukkan bahwa 50% tinggi badan adalah 170,20 cm ke atas, dan 50%-nya 170,20 cm ke bawah.
- d. Standar Deviasi adalah 6,03276 cm dan variansinya adalah 36,394 cm. Penggunaan standar deviasi adalah untuk menilai dispersi rata-rata dari sampel. Untuk itu, dengan standar deviasi tertentu dan pada tingkat kepercayaan 95%, rata-rata tinggi badan menjadi:

Rata-rata tingi badan = Rata-rata $\pm 2 x$ Standar Deviasi

Perhatikan bahwa kedua batas angka berbeda tipis dengan nilai minimum dan maksimum, ini artinya sebaran data adalah baik.

- e. Ukuran Skewnes adalah 0,572 cm. Untuk penilaian, nilai tersebut diubah ke angka rasio. Rasio kurtosis adalah = nilai kurtosis/standar error kurtosis = 0,572/0,902 = 0,63. Sebagai pedoman, bila rasio kurtosis berada antara -2 sampai dengan +2, maka distribusi data adalah normal.
- f. Ukuran kurtosis adalah 1,460 cm
- g. Data minimum adalah 159,60 cm sedangkan data maksimum adalah 186,60 cm
- h. Range data = Data maksimum Data minimum adalah 27,00 cm
- i. Angka Persentil:
 - Rata-rata tinggi badan 10% responden di bawah 160,62 cm
 - Rata-rata tinggi badan 25% responden di bawah 167,20 cm

- Rata-rata tinggi badan 50% responden di bawah 170,20 cm
- Rata-rata tinggi badan 75% responden di bawah 172,50 cm
- Rata-rata tinggi badan 90% responden di bawah 178,62 cm

			Tinggi		
				Valid	Cumulative
		Frequency	Percent	Percent	Percent
Valid	159.6	2	8.0	8.0	8.0
	161.3	1	4.0	4.0	12.0
	164.8	2	8.0	8.0	20.0
	167.2	2	8.0	8.0	28.0
	168.5	2	8.0	8.0	36.0
	168.9	3	12.0	12.0	48.0
	170.2	1	4.0	4.0	52.0
	170.4	3	12.0	12.0	64.0
	172.5	4	16.0	16.0	80.0
	174.5	2	8.0	8.0	88.0
	177.5	1	4.0	4.0	92.0
	180.3	1	4.0	4.0	96.0
	186.6	1	4.0	4.0	100.0
	Total	25	100.0	100.0	

Output bagian kedua (Tinggi)

Output ini merupakan gambaran tinggi badan responden dalam tabel frekuensi.

Gambar Histogram Hasil Analisis SPSS

Output bagian ketiga (Histogram)

Terlihat grafik data berbentuk seperti lonceng, ini artinya distribusi data adalah normal atau mendekati normal (pengujian secara statistik akan dibahas nanti)

D. Tugas

1. Berikut ini adalah sampel nilai dari mid test statistika I dari sekelompok mahasiswa di sebuah Universitas:

30, 35, 42, 50, 58, 66, 74, 82, 90, 98, 55, 53, 68, 71, 56, 59, 62, 71

Dengan perhitungan matematis dan aplikasi SPSS tentukanlah: rata-rata hitung, median, simpangan baku (Std. Deviation), variance, kemiringan, kurtosis, range, dan percentil, serta gambarkan bagan histogram data tersebut.

PRAKTIKUM 2 UJI PRASYARAT ANALISIS

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan uji normalitas dan homogenitas data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Uji Prasyarat Analisis

Uji persyaratan analisis diperlukan untuk mengetahui apakah analisis data untuk pengujian hipotesis dapat dilanjutkan atau tidak. Beberapa teknik analisis data menuntut uji persyaratan analisis. Misal, analisis varian mempersyaratkan bahwa data berasal dari populasi yang berdistribusi normal dan kelompok-kelompok yang dibandingkan homogen. Oleh karena itu analisis varian mempersyaratkan uji normalitas dan homogenitas data. Bagian ini akan dibahas secara singkat terkait uji normalitas dan uji homogenitas.

Uji normalitas data adalah bentuk pengujian tentang kenormalan distribusi data. Tujuan dari uji ini adalah untuk mengetahui apakah data yang terambil merupakan data terdistribusi normal atau bukan. Maksud dari terdistribusi normal adalah data akan mengikuti bentuk distribusi normal di mana data memusat pada nilai rata-rata dan median. Uji normalitas adalah uji yang dilakukan untuk mengecek apakah data penelitian kita berasal dari populasi yang sebarannya normal. Uji ini perlu dilakukan karena semua perhitungan statistik parametrik.

Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih kelompok data sampel berasal dari populasi yang memiliki variansi yang sama. Pada perkuliahan ini akan dikenalkan salah satu uji homogenitas yang sering digunakan dalam penelitian yaitu uji levene.

C. Aplikasi SPSS untuk Uji Normalitas

Berikut ini disajikan data tentang pre test, motivasi belajar, dan post test hasil belajar IPA SMP

Motivasi	Pre Test	Post Test
78	30	89
69	21	76
56	15	65
50	17	66
55	18	68
60	19	69
80	33	90
65	20	68
66	21	70
60	20	70
73	23	72
57	19	67
59	18	68
63	22	71
79	32	90
68	22	78
58	18	68
52	18	67
57	16	70
59	18	65
82	32	86
64	22	69
66	20	70
63	24	68
74	25	70
58	18	65
56	20	64
65	22	56
61	19	60
64	26	70

Ujilah apakah ketiga variabel di atas memiliki distribusi normal? Ujilah dengan menggunakan taraf signifikansi 5%!

1. Prosedur Analisis

- a. Jalankan program SPSS 22, pilih Variable View di bagian bawah.
- b. Isikan di kolom *Name* "Motivasi" di baris pertama dengan *decimals* bernilai 2, "PresTest" di baris ke dua dengan *decimals* bernilai 2, dan PostTest di baris ke tiga dengan *decimals* bernilai 2.

2				
	Name	Туре	Width	Decimals
1	Motivasi	Numeric	8	2
2	PresTest	Numeric	8	2
3	PostTest	Numeric	8	2
4				

c. Pilih *Data View* dan masukan nilai motivasi belajar, pre test, dan post test sebagai berikut.

		•		······
	Motivasi	PresTest	PostTest	var
7	80.00	33.00	90.00	
8	65.00	20.00	68.00	
9	66.00	21.00	70.00	
10	60.00	20.00	70.00	
11	73.00	23.00	72.00	
12	57.00	19.00	67.00	
13	59.00	18.00	68.00	
14	63.00	22.00	71.00	

d. Lakukan analisis dengan menggunakan menu Analyze → Non Parametric Test → Legacy Dialogs → 1 Sample K-S. Masukan semua variabel ke kotak Test Variable List.

sı.	

One-Sample Kolmogorov-Smirnov Test				
Test Variable List:	Exact Options			
Test Distribution				
Normal Difform				
🛄 Po <u>i</u> sson 🛄 <u>E</u> xponential				
OK Paste Reset Cancel Help				

e. Klik OK sehingga muncul hasil analisis sebagai berikut.

One-Sample Kolmogorov-Smirnov Test

		Motivasi	PresTest	PostTest
Ν		30	30	30
Normal Parameters ^{a,b}	Mean	63.9000	21.6000	70.8333
	Std. Deviation	8.39684	4.77493	8.22982
Most Extreme Differences	Absolute	.135	.200	.274
	Positive	.135	.200	.274
	Negative	087	125	139
Test Statistic		.135	.200	.274
Asymp. Sig. (2-tailed)		.174°	.004°	.000 ^c

a. Test distribution is Normal.

b. Calculated from data.

c. Lilliefors Significance Correction.

2. Pembacaan Hasil Analisis

Tabel **One-Sample Kolmogorov-Smirnov Test**menunjukkan hasil analisis uji normalitas terhadap ketiga variabel tersebut.

Hipotesis Penelitian :

Ho : Sampel berdistribusi normal.

H1 : Sampel berdistribusi tidak normal.

Kotontuon	Jika Asymp.Sig (2-tailed) $\geq \frac{1}{2} \alpha$, maka Ho diterima.
Netentuan	Jika Asymp. Sig (2-tailed) $< \frac{1}{2} \alpha$, maka Ho ditolak.

Berdasarkan hasil analisis di atas diperoleh :

- 1) Motivasi dengan Asymp.Sig (2-tailed = 0,174) $\geq \frac{1}{2} \alpha$ (0,05) sehingga berdistribusi normal.
- 2) Pre Test dengan Asymp.Sig (2-tailed = 0,004) $< \frac{1}{2} \alpha$ (0,05) sehingga berdistribusi tidak normal.

Post Test dengan Asymp.Sig (2-tailed = 0,000) < $\frac{1}{2} \alpha$ (0,05) sehingga berdistribusi tidak normal.

D. Aplikasi SPSS untuk Analisis Homogenitas

Perhitungan uji homogenitas menggunakan software SPSS adalah dengan Uji Levene statistics. Cara menafsirkan uji levene ini adalah, jika nilai Levene statistic > 0,05 maka dapat dikatakan bahwa variasi data adalah homogen.

Siswa	Eksperimen	Kontrol
S-01	4	6
S-02	9	4
S-03	11	6
S-04	13	12
S-05	5	7
S-06	11	14
S-07	4	13
S-08	5	10
S-09	9	10
S-10	11	13

Dibawah ini terdapat data Skor Tes Kemampuan Pemahaman Siswa

Siswa	Eksperimen	Kontrol
S-11	4	8
S-12	7	5
S-13	13	12
S-14	16	10
S-15	10	4
S-16	4	5
S-17	2	4
S-18	19	15
S-19	15	11
S-20	8	10

Berikut adalah Langkah-langkahnya:

- a. Buka SPSS
- b. Copy data tersebut ke dalam lembar kerja SPSS letakan dalam satu kolom dan perlu diingat no urutnya 1-20 adalah kelas eksperimen dan 21-40 kelas kontrol, kemudian pada kolom kedua isi dengan "1" untuk kelas Eksperimen dan "2" untuk kelas kontrol.

2 : skor	9.0	0	
	kelas	skor	var
1	1	4.00	
2	1	9.00	
3	1	11.00	
4	1	13.00	
5	1	5.00	
6	1	11.00	
7	1	4.00	
8	1	5.00	
9	1	9.00	
10	1	11.00	
11	1	4.00	

c. Buka Data View, pilih baris "kelas" dan isi kolom *Value* dengan "1", *Label* dengan "Eksperimen" kemudian klik *Add*, kemudian lanjutkan isi kolom *Value* dengan "2", *Label* dengan "Kontrol" kemudian klik *Add* dan klik *OK*.

🔁 Value Labels	×
Value: Label: Add 2 = "ksperimen" 2 = "kontrol"	Spelling
OK Cancel Help	

d. Lakukan pengujian homogenitas dengan uji *Lavene Statistic* dengan cara memilih menu : *analyze, compare means, one-way anova*.

			Regorts Descriptive Statistics Tables) 🕷 🖬 🐴 📕
1 2 3 4 5 6 7 8 9 10 11 11 12 13	kelas 1 1 1 1 1 1 1 1 1 1 1 1 1	skor 4.00 9.00 11.00 5.00 11.00 4.00 5.00 9.00 11.00 4.00 7.00 7.00	Dependent aussical Tagles Compare Menns General Linear Model Generaliged Linear Models Generaliged Linear Models (generalis Generalis Legdinear Heural Hetgorka Casalty Demansion Reduction Sirgile Honeparametric Tests Proceasing	••••••••••••	gena. Googange Test. Mineparter Test. Mineparter Test. Mineparter Test. Devel Sample Test. Devel Sample Test. Devel Sample Andre Test.
14 15 16 17	1	16.00 10.00 4.00 2.00	Multiple Response	,	
18 19 20 21	1 1 1 2	19.00 15.00 8.00 6.00	Complex Samples	, ,	
22 23	2	4.00 6.00			-

e. Masukan "skor" ke kotak *Dependen List* dan "kelas" ke kotak *Factor*.

f. Klik menu *Option* dan pilih *Homogenity of variance test*, kemudian klik *Continue*.

g. Kemudian klik *Ok* sehingga muncul hasil:

Test of Homogeneity of Variances

skor

Levene Statistic	df1	df2	Sig.
.893	1	38	.351

Vatantuan	Jika nilai Sig $\geq \alpha$, maka Ho diterima.
Ketentuan	Jika nilai Sig $< \alpha$, maka Ho ditolak.

Kerena *p*-value (sig) = 0.351 > 0.05 maka data siambil dari sampel yang homogen.

E. Tugas

1. Diketahui data skor 36 siswa kelas VII SMP dalam menyelesaikan soal-soal IPA di suatu bimbingan belajar.

7	5	4	6	7	5	6	3	7	4	4	4
2	8	6	2	6	8	8	2	4	1	7	9
6	8	5	8	8	6	7	5	6	3	6	3
7	0	2	4	1	6	6	8	8	2	0	5
6	8	5	6	8	5	8	9	7	6	8	7
5	8	3	7	0	2	4	5	0	4	1	4

Ujilah normalitas dari data tersebut dengan menggunakan aplikasi SPSS!

 Seorang guru IPA akan melakukan penelitian metode pembelajaran keempat kelas. Sebelum memberi perlakuan keempat kelas, guru tersebut ingin mengetahui homogenitas keempat kelas tersebut dengan nilai pretest. Nilai pretest tersebut sebagai berikut.

Sampel	A1	A2	A3	A4
1	12	14	6	9
2	20	15	16	14
3	23	10	16	18
4	10	19	20	19
5	17	22		

Ujilah homogenitas keempat kelas tersebut dengan menggunakan aplikasi SPSS.

PRAKTIKUM 3 STATISTIK PARAMETRIK I

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan uji *one sample t test* dan *independent sample t test* data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. One Sample T Test dan Independent T Test

Salah satu bagian penting dalam ilmu statistik adalah persoalan inferensi yaitu penarikan kesimpulan secara statistik. Dua hal pokok yang menjadi pembicaraan dalam statistik inferensi adalah penaksiran parameter populasi dan uji hipotesis. Teknik inferensi yang pertama dikembangkan adalah mengenai pembuatan sejunlah besar asumsi sifat populasi di mana sampel telah diambil. Teknik yang banyak digunakan pada metode-metode pengujian hipotesis dan penaksiran interval ini kemudian dikenal sebagai Statistik Parametrik, karena harga-harga populasi merupakan parameter. Ditribusi populasi atau distribusi variabel acak yang digunakan pada teknik inferensi ini mempunyai bentuk matematik yang diketahui, akan tetapi memuat beberapa parameter yang tidak diketahui.

One Sample T Test adalah uji komparatif untuk menilai perbedaan antara nilai tertentu dengan rata-rata kelompok populasi. One sample t test disebut juga dengan istilah student t test atau uji t satu sampel oleh karena uji t di sini menggunakan satu sampel. Independent sample t test adalah uji dengan dua sampel. Independen T Test adalah uji komparatif atau uji beda untuk mengetahui adakah perbedaan mean atau rerata yang bermakna antara 2 kelompok bebas yang berskala data interval/rasio. Dua kelompok bebas yang dimaksud di sini adalah dua kelompok yang tidak berpasangan, artinya sumber data berasal dari subjek yang berbeda. Misal Kelompok Kelas A dan Kelompok kelas B, di mana responden dalam kelas A dan kelas B adalah 2 kelompok yang subjeknya berbeda.

C. One Sample T Test dengan SPSS

Sebelum mengolah data dengan menggunakan SPSS, masukan dulu data kedalam SPSS.

- 1. Klik Variabel View pada sebelah kiri bawah jendela SPSS.
- 2. Masukan data seperti dibawah gambar dibawah ini :

		, r			K 🗐		5
	Name	Туре	Width	Decimals	Label	Values	1
1	Botol	Numeric	8	0		None	Non
2							
3							

3. Setelah itu masukan data isi botol diatas pad Data View yang ada di kiri bawah, seperti jendela dibawah ini :

File	Edit	⊻iew	<u>D</u> ata	Transform
2)	
21 : E	lotol			
		E	Botol	var
	1		101	
	2		99	
	3		104	
	4		103	
	5		102	
	6		100	
	7		98	
	8		101	
	9		101	
9	10		100	
	11		99	

4. Pilih Analyze untuk memulai t-test, pada sub menu pilih Compare Means kemudian pilih One-Sample T-Test seperti dibawah ini:

File	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Direct Marketing	<u>G</u> raphs	<u>U</u> tilities	Add-o	ns <u>V</u>	Vindow	<u>H</u> elp	
2			, r	Reports Descriptive Statistics	*		4		5		▲ 1년
21:E	lotol			Ta <u>b</u> les	*						
		Botol	var	Co <u>m</u> pare Means	•	Means	3				Va
	1	10	11	General Linear Model	•	One-S	amnle 1	Test	N		
	2	9	19	Generalized Linear Mo	dels 🕨		and ant (Demele	6		
	3	10	14	Mixed Models		Paired-Samples T Test					
	4	10	13	Correlate	•						
	5	10	2	Regression		One-V	Vay ANO	IVA			
	6	10	0	Loginear	, T						
	7	9	18	Noural Natworks							
	8	10	11	Oleasifi							
	9	10	1	Classily							
8	10	10	10	Dimension Reduction							
1	11	9	19	Scale	,						
1	12	9	17	Nonparametric Tests	,						
	13	9	18	Forecasting	,						

- Akan muncul jendela One Sample T-Test, pindahkan variabel botol ke test variabel dengan memilih variabel botol kemudian klik tanda panah ke kanan di jendela tersebut. Dan isikan test Value dengan T hitung yang dijadikan perbandingan.
- 6. Klik Option pada jendela One Sample T-Test kemudian muncul jendela berikutnya. Isikan derajat keyakinan sebesar 95% ($\alpha = 55$)

7. Klik Continue kemudian Ok akan muncul jendela hasil yang menampilkan text dan tabel seperti dibawah ini :

T-Test [DataSet0]

 	One-Sample Statistics							
Ν	N Mean Std. Devia		Std. Error Mean					
20	100.45	2.544	.569					

		0	ne-Sample Test			
			Test Value = 100			
Т	T df Sig. (2-tailed) Mea			95% Confidence Interval of the Difference		
				Lower	Upper	
.791	19	.439	.450	74	1.64	

8. Kesimpulan

Dari output kedua diperoleh nilai t hitung SPSS = 0,791. Sedangkan nilai $-t_{\alpha/2}$ dan $t_{\alpha/2}$ adalah -2,093 dan 2,093. Jika dibandingkan, maka t hitung SPSS berada di antara angka-angka t tabel, sehingga Ho diterima. Karena Sig. (2-tailed) > 0,05 maka HO diterima.

Oleh karena dapat diambil keputusan bahwa *dengan tingkat kepercayaan 95%, secara signifikan hasil pengujian tidak berbeda dengan apa yang diklaim oleh perusahaan pembuat mesin pengisi botol.*

D. Independent sample t test dengan SPSS

Berikut ini disajikan data IPK mahasiswa kelas A yang (pembelajaran ceramah) dengan Kelas B (pembelajaran berbasis media komputer) dengan pembelajaran inkuiri.

Nila	i IPA
Kelas A	Kelas B
3.12	3.29
3.33	2.89
3.40	3.48
3.21	3.75
2.98	3.33
3.02	2.87
3.66	3.27
3.51	3.87
	3.23
	3.12
	3.04

Ujilah apakah kedua kelas memiliki varian yang sama?

Ujilah apakah ada perbedaan IPK antara mahasiswa kelas A dan kelas B? Jika ada perbedaan, manakah yang memiliki IPK lebh tinggi?

(Gunakan taraf signifikansi 5%)

Prosedur Analisi

- 1. Jalankan program SPSS 22, pilih *Variable View* di bagian bawah.
- Isikan di kolom *Name* "Kelas" di baris pertama dengan *decimals* bernilai 0, dan "IPK" di baris ke dua dengan *decimals* bernilai 2.

3. Pilih *Data View* di samping *Variable View* dan masukan data IPK dengan indeks 1 untuk kelas A dan indeks 2 untuk kelas B serta masukan semua nilainya.

<u>File E</u> dit	⊻iew <u>D</u> ata	<u>T</u> ransform <u>A</u>	nalyze Direc	t <u>M</u> ark
2		. 🗠 🗸	-	
2:				
	Kelas	IPK	var	١
1	1	3.12		
2	1	2.87		
3	1	2.43		

4. Pilih menu *Analyze* → *Compare Mean* → *Independent-Samples T Test*.

5. Masukan variabel Nilai ke Test Variable(s) dan Kelas ke Grouping Variable.

6. Klik tombol Define Groups dan isikan 1 di *Group 1* dan 2 di *Group 2* dan klik tombol continue.

ta Independent-Samples T Test	
Test Variable	(s): <u>Options</u> <u>Bootstrap</u> riable: Ips ncel Help

7. Klik OK sehingga muncul hasil sebagai berikut.

Output SPSS untuk Independent Samples T Test.

Group Statistics							
	Kelas	N	Mean	Std. Deviation	Std. Error Mean		
Nilai	1	8	2.9788	.38632	.13658		
	2	11	3.7555	.18587	.05604		

Independent Samples Test

		Levene's Test for Equality of								
		Variances			t-test for Equality of Means					
									95% Confidence	e Interval of the
						Sig. (2-	Mean	Std. Error	Differ	ence
		F	Sig.	t	Df	tailed)	Difference	Difference	Lower	Upper
Nilai	Equal variances assumed	2.835	.111	-5.845	17	.000	77670	.13288	-1.05705	49636
	Equal variances not assumed			-5.261	9.369	.000	77670	.14763	-1.10868	44473

- 8. Pembacaan hasil analisis dan kesimpulan.
 - a. Tabel **Independent Samples Test** menampilkan uji varian kedua kelompok dan perbedaan.

F test digunakan untuk menguji asumsi dasar dari t test bahwa varian kedua kelompok sama.

Hipotesis Penelitian :

Ho : kedua kelompok memiliki varian yang sama (homogen).

H1 : kedua kelompok memiliki varian yang tidak sama (tidak homogen).

	Jika F hitung < F table, maka Ho diterima. Jika F hitung > F table, maka Ho ditolak
Ketentuan	
Iterentuun	Lika Sig > α maka Ho diterima
	Jika Sig $< \alpha$ maka Ho ditolak
	JIKa SIg < 0., IIIaKa IIO ultolak.

Nilai Sig $(0,111) > \alpha$ (0,05), maka Ho diterima. Jadi kedua kelompok memiliki varian yang sama (homogen).

Uji selanjutnya memakai nilai pada baris bagian atas (equal variances assumed), namun apabila pada perhitungan Sig < α maka memakai nilai baris yang bawah.

Hipotesis Penelitian :

Ho : jenis pembelajaran tidak berpengaruh terhadap IPK mahasiswa.

H1 : jenis pembelajaran berpengaruh terhadap IPK mahasiswa.

	Jika t hitung < t table, maka Ho diterima.				
Jika t hitung > t table, maka Ho ditolak.					
Ketentuan	Atau				
	Jika Sig (2-tailed) > $\frac{1}{2} \alpha$, maka Ho diterima.				
	Jika Sig (2-tailed) $< \frac{1}{2} \alpha$, maka Ho ditolak.				

Nilai t hitung kecil dan nilai Sig (2-tailed = 0,000) < $\frac{1}{2} \alpha$ (0,05) maka Ho ditolak. Jadi jenis pembelajaran yang digunakan dalam pembelajaran berpengaruh pada IPK mahasiswa.

E. Tugas

 Diberikan data nilai hasil belajar kedua kelas A dan B. Kelas A merupakan kelas kontrol dengan pembelajaran ceramah dan kelas B merupakan kelas eksperimen dengan pembelajaran inkuiri sebagai berikut.

Sampel	А	В
1	80	73
2	78	81
3	78	77
4	81	79
5	87	64
6	67	89
7	76	72
8	68	82
9	75	76
10	74	78
11	81	75
12	77	87
13	79	67
14	64	76
15	89	73

Ujilah apakah kedua kelas terdapat perbedaan dengan SPSS

2. Diketahui data skor 30 siswa dalam menyelesaikan soal-soal matematika pada try out di suatu bimbingan belajar

72	48	66	62	76	58	78	32	74	41	47
57	80	52	54	81	66	70	85	64	70	60
65	88	43	37	68	55	39	35			

Ujilah dengan *one sample t test* dengan SPSS untuk mengetahui perbedaan dengan hasil try out ke,arin jika tahun kemarin nilai rata-ratanya adalah 65.

PRAKTIKUM 4 STATISTIK PARAMETRIK II

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan uji *paired t test* dan *Anova* data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Paired T Test dan Anova

Analisis *paired-sample t-test* merupakan prosedur yang digunakan untuk membandingkan rata-rata dua variabel dalam satu group. Analisis ini digunakan untuk melakukan pengujian terhadap satu sampel yang mendapatkan sata *treatment* yang kemudian akan dibandingkan rata-rata dari sampel tersebut antara sebelum dan sesudah *treatment*.

Analisis varians (*analysis of variance*) atau ANOVA adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Uji dalam anova menggunakan uji F karena dipakai untuk pengujian lebih dari 2 sampel. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupunpendugaan (*estimation*, khususnya di bidang genetika terapan).

C. Paired T Test dengan SPSS

- 1. Jalankan program SPSS 22, pilih Variable View di bagian bawah.
- Isikan di kolom Name "PreTest" di baris pertama dengan decimals bernilai 2, dan "PostTest" di baris ke dua dengan decimals bernilai 2.

<u> </u>				i
	Name	Туре	Width	Decimals
1	PreTest	Numeric	8	2
2	PostTest	Numeric	8	2
3				
4				
	1			
Data View	Variable View			

3. Pilih Data View dan masukan data pre test dan post test sebagai berikut.

	PreTest	PostTest	var				
1	45.00	78.00					
2	38.00	75.00					
3	47.00	80.00					
4	28.00	60.00					
5	37.00	64.00					
6	47.00	75.00					
7	44.00	79.00					
8	35.00	71.00					
9	41.00	67.00					
10	42.00	71.00					
11							
12							
1							
Data View	Variable View						

4. Pilih menu *Analyze* → *Compare Mean* → *Paired-Samples T Test*.

t	Paired-Samples T Test						
Γ			Paired <u>V</u>	ariables:			Options
	PreTest		Pair	Variable1	Variable2		Restetran
	PostTest		1				Doorsnap
		>				۲ ۲	
						+	
		OK	<u>P</u> aste	Reset Car	Help		

5. Masukan variabel PreTest dan PostTest ke kotak Paired Variables.

6. Klik OK sehingga muncul hasil sebagai berikut.

Output SPSS untuk Paired Samples T Test.

Paired Samples Statistics								
_		Mean	Ν	Std. Deviation	Std. Error Mean			
Pair 1	PreTest	40.4000	10	6.00370	1.89854			
	PostTest	72.0000	10	6.68331	2.11345			

Paired Samples Correlations

_		Ν	Correlation	Sig.
Pair 1	PreTest & PostTest	10	.817	.004

Paired Samples Test

		Paired Differences							
					95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	PreTest – PostTest	-31.60000	3.89301	1.23108	-34.38489	-28.81511	-25.669	9	.000

- 7. Pembacaan Hasil Analisis
 - a. Tabel *Paired Samples Correlations* menampilkan uji korelasi nilai pre test dan post test.

Hipotesis Penelitian:

- H_o : Tidak ada hubungan antara pre test dan post test dengan pembelajaran inkuiri.
- H_1 : Ada hubungan antara pre test dan post test dengan pembelajaran inkuiri.

Ketentuan penerimaan/penolakan hipotesis sebagai berikut.

 $t_{hitung} < t_{tabel}$, maka Ho diterima $t_{hitung} > t_{tabel}$, maka Ho ditolak Atau Jika Sig > α , maka Ho diterima. Jika Sig < α , maka Ho ditolak.

Kesimpulan:

Nilai Sig $(0,004) < \alpha$ (0,05), maka Ho ditolak. Jadi ada hubungan antara pre test dan post test dengan pembelajaran inkuiri dengan tingkat hubungan/korelasi cukup besar, yaitu 0,817.

b. Tabel *Paired Samples Test* menampilkan uji beda nilai pre test dan post test sesudah perlakuan/pembelajaran inkuiri.

Hipotesis Penelitian:

- Ho : Tidak ada perbedaan antara pre test dan post test dengan pembelajaran inkuiri.
- H1 : Ada perbedaan antara pre test dan post test dengan pembelajaran inkuiri.

Ketentuan penerimaan/penolakan hipotesis sebagai berikut.

 $t_{hitung} < t_{tabel}$, maka H_o diterima $t_{hitung} > t_{tabel}$, maka H_o ditolak Atau Jika Sig (2-tailed) >½ α , maka H_o diterima. Jika Sig (2-tailed) <½ α , maka H_o ditolak.

Kesimpulan

Nilai Sig (2-tailed = 0,000) $< \frac{1}{2} \alpha$ (0,025), maka Ho ditolak. Jadi ada perbedaan nilai pre test dan post test sesudah perlakuan/pembelajaran inkuiri. Dengan kata lain pembelajaran inkuiri berpengaruh terhadap hasil post test.

D. Anova dengan SPSS

Berikut ini disajikan data skore TOEFL Mahasiswa Pendidikan IPA yang mengikuti kursus bahasa Inggris.

Sampel	Lama Kursus					
	3 bulan	6 bulan	9 bulan			
1	423	444	478			
2	410	459	480			
3	421	440	494			
4	428	435	507			
5	404	468	459			

Ujilah apakah ada perbedaan antara lama kursus terhadap skore TOEFL? (Gunakan taraf signifikansi 5%).

Analisis Perhitungan dengan SPSS.

- 1. Jalankan program SPSS 22, pilih Variable View di bagian bawah.
- Isikan di kolom Name "LamaKursus" di baris pertama dengan decimals bernilai 0, dan "SkoreToefl" di baris ke dua dengan decimals bernilai 2.

😑 🔚				· 📥 =
	Name	Туре	Width	Decimals
1	LamaKursus	Numeric	8	0
2	SkoreToefl	Numeric	8	2
3				
4				
	4			
Data View	Variable View			

3. Pilih Data View dan masukan data lama kursus dan skore Toefl sebagai berikut.

		× 🛏	-
1:			
	LamaKursus	SkoreToefl	var
1	3	423.00	
2	3	410.00	
3	3	421.00	
4	3	428.00	
5	3	404.00	
6	6	444.00	
7	6	459.00	
8	6	440.00	
9	6	435.00	
10	6	468.00	
11	9	478.00	
12	9	480.00	
13	9	494.00	
14	9	507.00	
15	9	459.00	
16			
	4		
Data View	Variable View		

- Cone-Way ANOVA
- 4. Pilih menu *Analyze* → *Compare Mean* → *One Way Anova*.

5. Masukan variabel SkoreToefl ke kotak Dependent List, dan LamaKursus ke kotak Faktor.

🔄 One-Way ANOVA		x
	Dependent List:	Contrasts Post <u>H</u> oc Options <u>B</u> ootstrap
ОК	Factor: LamaKursus Paste Reset Cancel Help	

6. Klik tombol Post Hoc \rightarrow LSD \rightarrow Continue.

🔄 One-Way ANOVA: Post Hoc Multiple Comparisons						
_ Equal Variances A	ssumed					
	🔲 <u>S</u> -N-К	Waller-Duncan				
Bonferroni	Tukey	Type I/Type II Error Ratio: 100				
🔲 S <u>i</u> dak	📃 Tu <u>k</u> ey's-b	Dunn <u>e</u> tt				
Scheffe	Duncan	Control Category : Last 👻				
🔲 <u>R</u> -E-G-W F	📃 <u>H</u> ochberg's GT2	Test				
🔲 R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	O 2-sided O < Control O > Control				
Equal Variances N	ot Assumed					
Ta <u>m</u> hane's T2	📃 Dunnett's T <u>3</u>	🔲 G <u>a</u> mes-Howell 📄 D <u>u</u> nnett's C				
Significance level: 0.05						
Continue Cancel Help						

7. Klik tombol *Options* → *Descriptive* → *Homogeneity of Variances Test* → *Continue*.

🖬 One-Way ANOVA: Options
⊂ Statistics
Descriptive
Fixed and random effects
Homogeneity of variance test
Brown-Forsythe
Welch
Means plot
Missing Values
Exclude cases analysis by analysis
© Exclude cases listwise
Continue Cancel Help

8. Klik OK sehingga muncul hasil sebagai berikut.

Output SPSS untuk Anova.

Descriptives

SkoreToefl				_				
					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
3	5	417.2000	9.88433	4.42041	404.9270	429.4730	404.00	428.00
6	5	449.2000	13.80942	6.17576	432.0533	466.3467	435.00	468.00
9	5	483.6000	18.06378	8.07837	461.1709	506.0291	459.00	507.00
Total	15	450.0000	31.03684	8.01368	432.8124	467.1876	404.00	507.00

Test of Homogeneity of Variances

SkoreToefl

Levene Statistic	df1	df2	Sig.
.786	2	12	.478

ANOVA

SkoreToefl					
-	Sum of Squares	Df	Mean Square	F	Sig.
Between Groups	11027.200	2	5513.600	26.909	.000
Within Groups	2458.800	12	204.900		
Total	13486.000	14			

Multiple Comparisons

Dependent Variable: SkoreToefl

LSD

		Mean Difference			95% Confidence Interval	
(I) LamaKursus	(J) LamaKursus	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
3	6	-32.00000*	9.05318	.004	-51.7252	-12.2748
	9	-66.40000^{*}	9.05318	.000	-86.1252	-46.6748
6	3	32.00000*	9.05318	.004	12.2748	51.7252
	9	-34.40000*	9.05318	.003	-54.1252	-14.6748
9	3	66.40000 [*]	9.05318	.000	46.6748	86.1252
	6	34.40000*	9.05318	.003	14.6748	54.1252

*. The mean difference is significant at the 0.05 level.

- 9. Pembacaan Hasil Analisis
 - a. Tabel *Descriptives* menunjukan hasil analisis statistik deskriptifnya seperti rata per kelompok, standar deviasi, standar error, minimum dan maksimum.
 - b. Tabel *Test of Homogeneity of Variances* menunjukan hasil uji homogenitas varians sebagai prasyarat untuk dapat menggunakan ANOVA.

Hipotesis Penelitian:

- Ho : Ketiga kelompok memiliki nilai varian yang sama.
- H1 : Ketiga kelompok memiliki nilai varian yang tidak sama.

Ketentuan penerimaan/penolakan:

Jika Sig > α , maka Ho diterima.

Jika Sig $< \alpha$, maka Ho ditolak.

Kesimpulan:

Hasil pengujian ditemukan bahwa F hitung = 0,786 dengan sig = 0,478. Oleh karena nilai sig > α (0,05) maka dapat disimpulkan bahwa ketiga kelompok memiliki nilai varian yang sama atau dengan kata lainvarians antar kelompok bersifat homogen.Dengan demikian prasyarat untuk dapat menggunakan ANOVA terpenuhi.

c. Tabel ANOVAmenunjukan hasil uji beda rata-rata secara keseluruhan.

Hipotesis Penelitian :

- Ho : Ketiga kelompok memiliki rata-rata skore Toefl yang sama.
- H1 :Ketiga kelompokmemilikirata-rata skore Toeflyang berbeda.

Ketentuan penerimaan/penolakan :

Jika F hitung < F tabel, maka Ho diterima.

Jika F hitung > F tabel, maka Ho ditolak.

Atau

Jika Sig > α , maka Ho diterima.

Jika Sig < α , maka Ho ditolak.

Hasil analisis ditemukan harga F hitung sebesar 26,909 dengan sig = 0,000. Oleh karena nilai sig < 0,05 maka Ho ditolak sehingga dapat disimpulkan ada perbedaan rata-rata skore Toefl antara mahasiswa yang mengambil kursus tiga bulan, enam bulan, dan Sembilan bulan.

Keterangan: jika hasil pengujiannya signifikan maka dilanjutkan ke uji post hoc, tetapi jika tidak signifikan pengujian berhenti sampai di sini).
d. Tabel *Multiple Comparison* smenunjukan hasil uji lanjut untuk mengetahui perbedaan antar kelompok secara spesifik sekaligus untuk mengetahui mana di antara ketiga kelompok tersebut yang skore Toeflnya paling tinggi.

Hipotesis Penelitian:

- Ho : Kedua kelompok memiliki rata-rata skore Toefl yang sama.
- H1 : Kedua kelompok memiliki rata-rata skore Toefl yang tidak sama.

Ketentuan penerimaan/penolakan:

Jika Sig > α , maka Ho diterima.

Jika Sig $< \alpha$, maka Ho ditolak.

Misalnya untuk melihat perbedaan skore Toefl antara mahasiswa yang kursus tiga bulan dan enam bulan diperoleh nilai sig = 0,004, Oleh karena nilai sig < 0,05 dapat disimpulkan bahwa ada perbedaan skore Toefl antara mahasiswa yang kursus tiga bulan dan enam bulan. Dalam hal ini skore Toefl mahasiswa yang kursus enam bulan lebih tinggi dari pada yang kursus tiga bulan. Dengan kata lain lama kursus berpengaruh terhadap peningkatan skore Toefl mahasiswa.

E. Tugas

 Uji anova satu arah akan digunakan untuk mengetahui adakah hubungan antara tingkat stress mahasiswa pada program studi teknik fisika. Tingkat stress diukur pada skala 1-10. Skala 1 hingga 3 menunjukkan mahasiswa cukup stress. Skala 4 sampai 6 menunjukkan mahasiswa dalam keadaan stress dan skala 7 keatas menunjukkan mahasiswa sangat stress. Pengamatan dilakukan dengan menggunakan metode pengumpulan data yaitu kuisioner yang disebarkan pada 75 responden.

	17	Гahu	n		2 Tahun				3 Tahun					
4	2	1	4	1	2	4	1	2	8	6	6	5	9	5
6	2	2	7	4	2	5	9	1	8	2	8	1	9	6
2	1	3	9	5	3	6	8	1	7	1	1	3	2	7
8	7	5	5	4	4	7	4	4	7	9	4	2	1	3
8	5	2	4	7	5	8	7	7	7	8	8	5	4	4

Gunakan SPSS untuk analisis uji Anova untuk mengetahui apakah terdapat hubungan antara tahun studi terhadap tingkat stress mahasiswa teknik fisika tersebut. Gunakan taraf signifikansi 5%.

 Seorang guru ingin menguji efektifitas model pembelajaran tatistik dengan studi kasus. Maka dilakukan pre test dan post test dari 21 siswanya. Berikut data pretest dan post test. Ujilah data tersebut dengan uji t berpasangan (*paired t test*) dengan SPSS dan perhitungan biasa, gunakan α = 5% (Anggap data berdistribusi normal dan homogen).

Pre Test	Post Test
76	79
83	89
75	70
76	75
60	79
66	80
77	89
90	90
75	83
65	70
70	75

Pre Test	Post Test
75	75
85	80
76	79
76	76
45	80
79	75
75	89
79	85
68	70
80	80

PRAKTIKUM 5 STATISTIK NONPARAMETRIK I

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- Memiliki kemampuan menggunakan SPSS untuk melakukan uji Chi Kuadrat dan uji *Mann Whitney* data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Uji Chi Kuadrat dan Uji Mann Whitney

Pengujian dengan statistik non parametrik merupakan pengujian yang tidak membutuhkan asumsi mengenai bentuk distribusi sampling statistika dan atau bentuk distribusi populasinya. Pengujian non parametrik tidak menuntut: sampel yang diambil harus berdistribusi normal dan angka-angka sampel merupakan ukuran-ukuran tingkat taraf tinggi. Metode statistik nonparametrik merupakan metode statistik yang dapat digunakan dengan mengabaikan segala asumsi yang melandasi metode statistik parametrik, terutama yang berkaitan dengan distribusi normal. Uji statistik non parametrik I yang akan dipelajari pada bagian ini yaitu: Uji Chi Kuadrat analog dengan *One Sample Test* dan Uji *Mann Whitney* analog dengan *Two Independent Samples Test*.

Prosedur uji Chi Kuadrat dilakukan dengan mentabulasi suatu variabel ke dalam kategorikategori dan melakukan uji hipotesis bahwa frekuensi yang diamati tidak berbeda dengan nilai yang diharapkan. Metode chi-kuadrat (x^2) digunakan untuk mengadakan pendekatan (mengestimate) dari beberapa faktor atau mengevaluasi frekuensi yang diselidiki atau frekuensi hasil observasi (*fo*) dengan frekuensi yang diharapkan (*fe*) dari sampel apakah terdapat hubungan atau perbedaan yang signifikan atau tidak. Untuk mengatasi permasalahan seperti ini, maka perlu diadakan teknik pengujian yang dinamakan pengujian x^2 .

Uji Two Independent Sample pada hakikatnya sama dengan uji *Independent Sample T Test* dengan persyaratan yang lebih longgar. Ada dua kelonggaran prasyarat yaitu: mampu digunakan untuk tipe data ordinal dan tidak mensyaratkan distribusi tertentu (normal). Uji Mann-Whitney/Wilcoxon merupakan alternatif bagi uji-t. Uji Mann Whitney digunakan untuk membandingkan dua mean populasi yang berasal dari populasi yang sama. Uji Mann-Whitney juga digunakan untuk menguji apakah dua mean populasi sama atau tidak.

C. Uji Chi Kuadrat dengan Aplikasi SPSS

Kepala Dinas Pendidikan di Kuala Hajir melakukan penelitian Gerakan Disiplin Sekolah (GDS) siswa tingkat SMP yaitu SMP 1, SMP 2, dan SMP 3. Sampel diambil sebanyak 725 siswa yang menyebar SMP1 = 275 siswa, SMP 2 = 250 orang, dan SMP 3 = 200 orang. Frekuensi Observasi dari 725 siswa tersebut dikelompokkan ke dalam tiga level disiplin (tinggi, sedang, dan rendah).

Siguro SMD		Total		
SISwa SIVIF	Tinggi (100-85)	Sedang (84-66)	Rendah (65-0)	Total
SMP 1	150	75	50	275
SMP 2	75	150	25	250
SMP 3	150	25	25	200
Jumlah	375	250	100	725

Tabel Hasil Pelaksanaan GDS siswa SMP di Kuala Hajir.

Langkah 1: memberi bobot data

1. Membuka aplikasi SPSS, pada "Variable View" isikan pada kolom Name: Tingkat dan Jumlah sebagaimana gambar berikut.

-												
Eile	Edit	View Data	Transform	Analyze I	Direct <u>M</u> arketir	ng <u>G</u> raphs	Utilities Add-on	ns <u>W</u> indow	Help			
2				- 1	*	P M		- 43		4	ABS	
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	1	Tingkat	Numeric	7	0		None	None	13	🗃 Right	🚓 Nominal	🦒 Input
2	2	Jumlah	Numeric	8	2		None	None	8	🔳 Right	🛷 Scale	🦒 Input
3	3											

2. Pada "Data View", masukkan data yang akan dianalisis sebagaimana gambar berikut.

Eile	Edit	<u>View</u> <u>D</u> ata	Transf	orm <u>A</u> nalyz	e Direct <u>M</u> a	arketing <u>G</u> ra	aphs <u>U</u> tilitie	s Add- <u>o</u> ns	s <u>W</u> indow	Help				
] 🗠		🖹 📩		H 🕈	ş 🔛	- <u>-</u>	1		-		
6:														
		Tingkat		Jumlah	var	var	var	var	var	var	var	var	var	
1			1	150.00										
2			1	75.00										
3			1	150.00										
4			2	75.00										
5			2	150.00										
6			2	25.00										
7			3	50.00										
8			3	25.00										
9			3	25.00										

Keterangan: 1 = Tinggi, 2 = Sedang, dan 3 = Rendah

3. Klik Data => Weight Cases pada menu, sehingga muncul kotak dialog sebagai gambar berikut.

1 V	Veight Cases ×
<mark>∢ Tingkat</mark> ∳ Jumlah	Do not weight cases Weight cases by Frequency Variable:
OK Paste	Current Status: Weight cases by Jumlah

4. Pilih "Weight cases by" dan masukkan "Jumlah" pada kotak "Frequency Variable", kemudian klik OK.

Langkah 2: analisis Chi Square

 Klik Analyze => Nonparametric Test => Legacy Dialogs => Chi Square, sehingga muncul kotak dialog sebagaimana gambar berikut.

<u>F</u> ile	Edit	<u>V</u> iew <u>D</u> ata	Transform	Analyze	Direct <u>M</u> arketing	<u>G</u> raphs	Utilit	es Add- <u>c</u>	ns <u>W</u> indow	<u>H</u> elp			
2				Repo D <u>e</u> so	rts riptive Statistics) 				1	4 📀 🌑	ABC	
		Name	Туре	Table	s			Values	Missing	Columns	Align	Measure	Role
		Tingkat	Numeric	Com	pare Means	*	N	one	None	13	🗃 Right	\delta Nominal	💊 Input
	2	Jumlah	Numeric	Gene	ral Linear Model		N	one	None	8	🚟 Right	Unknown	🦒 Input
				Gene	ralized Linear Mode	ls 🕨							
4				Mixed	Models	· ·							
1				Corre	late								
(Rear	ession								
1				Logi	near								
1				Neur	al Networke								
				Class	aify of the								
1	0			Dime	unsion Reduction								
1	1			Real									
1	2			blees	; oromatria Testa					<u> </u>			
1	3			Nout	arametric rests		A 9	ne Sample.					
1	4			Forec	asung		/ \ !	ndependent	Samples	_			
1				Survi	vai		A E	elated Sam	ples				
1	6			Multip	ole Response		ļ	egacy Dialo	igs 🕨	Chi-	square		
1	7			💋 Missi	ng Value Analysis								

6. Masukkan variabel "Tingkat" pada kotak *"Test Variable List"*. Secara default *Get from data* ada kotak *Expected Range* dan *All categories equal* pada kotak *Expected Values* akan terpilih.

te	Chi-square Test	×
🖋 Jumlah	Test Variable List	Exact Options
Expected Range © Get from data © Use specified range Lower:	Expected Values Ø All categories of Values: Add Change Remove	qual
ОК	aste <u>R</u> eset Cancel	Help

7. Klik OK.

Hasil analisis sebagai berikut.

Tingkat							
-	Observed N	Expected N	Residual				
1	375	241.7	133.3				
2	250	241.7	8.3				
3	100	241.7	-141.7				
Total	725						

Test Statistics

	Tingkat
Chi-Square	156.897 ^a
Df	2
Asymp. Sig.	.000

a. 0 cells (0.0%) haveexpected frequencies less than5. The minimum expected cellfrequency is 241.7.

Keterangan:

Hasil analisis *Chi Square Test*:

- Ha : Ada perbedaan yang signifikan antara siswa SMP 1, SMP 2, dan SMP 3 dalam pelaksanaan GDS.
- Ho : Tidak ada perbedaan yang signifikan antara siswa SMP 1, SMP 2, dan SMP 3 dalam pelaksanaan GDS

Hasil Analisis SPSS	Keterangan
Jika $X^{2}_{hitung} < X^{2}_{tabel}$	Ho diterima
Jika $X^{2}_{hitung} > X^{2}_{tabel}$	Ho ditolak
Atau	
Jika Asymp Sig > α	Ho diterima
Jika Asymp Sig $< \alpha$	Ho ditolak

Berdasarkan hasil analisis, tingkat kepercayaan 95% ($\alpha = 5\%$), df(k-1) = 2

Asymp $Sig = 0.000 < \alpha$, sehingga Ho ditolak.

Kesimpulan: Ada perbedaan yang signifikan antara siswa SMP 1, SMP 2, dan SMP 3 dalam pelaksanaan GDS.

D. Uji Mann Whitney dengan SPSS

Seorang peneliti ingin mengetahui, apakah terdapat perbedaan nilai tes siswa yang diajar dengan metoda A dan yang diajar dengan metoda B. Berikut data nilai siswa tersebut. Gunakan $\alpha = 5$ %.

Nilai tes siswa yang diajar dengan metoda A : 56, 70, 57, 58, 45, 37, 69, 67, 60

Nilai tes siswa yang diajar dengan metoda B : 75, 59, 27, 91

Penyelesaian dengan Aplikasi SPSS

1. Membuka aplikasi SPSS, pada "Variable View" isikan pada kolom Name: metode dan rangking sebagaimana gambar berikut.

2. Pada "Data View", masukkan data yang akan dianalisis sebagaimana gambar berikut.

File	Fait	View L	jata	Iransform	Analyze	Direct Marketi	ng <u>G</u> raphs	Utilities	Add-ons	Window He	эір			
	Н		<u>.</u>		¥ 🖺	*	E	1 👪	<u> </u>	4	<mark>้ (</mark>	0	ABC	
5:														
	[metode	e	rangking	var	var	var	var	var	var	var	var	var	var
1		1	1.00	5.00										
2		1	1.00	105.00										
3		1	1.00	6.00										
4		1	1.00	7.00										
5		1	1.00	3.00										

3. Klik *Analyze => Nonparametric Test => Legacy Dialogs => 2 Independent Samples*, maka muncul kotak dialog sebagai berikut.

File	Edit	View	Data	Transform	Analyze	Direct Marketing	Graphs	Utilities	Add-ons	W	indow <u>F</u>	lelp					
2				5	Rego Desc	orts criptive Statistics	> >	*	4		4	A	0	ABS			
2:					Table	Tables											
		metod	de	rangking	Com	pare Means		var	var		var	var	var	var	var	var	
1			1.00	5.00	Gene	eral Linear Model											
2			1.00	105.00	Gene	eralized Linear Mode	ls 🕨										
3			1.00	6.00	Mixed	d Models											
4			1.00	7.00	Corre	elate	*										
5			1.00	3.00	Regr	ession											
6			1.00	2.00	Logli	near											
7			1.00	9.00	Neur	al Networks											
8			1.00	8.00	Class	cify											
9			1.00	105.00	Dime	ansion Reduction											
1)		2.00	12.00	Scale												
1	1		2.00	4.00	Non	-				_		1					
1	2		2.00	1.00	Earon			<u>A</u> One S	ample								
1	3		2.00	13.00	Polet	Lasing	, i	Å Indep	endent Sa	mples							
1	1				Sum	vai	, i	A Relate	d Sample	s							
1	5				Mulup	pie Response	,	Lega	y Dialogs		- F	K Chi-squa	ire				
1	5				Missi	ng Value Analysis						071 Binomial					
1	7				Multip	ple Imputation	•					Runs					
1	3				Com	plex Samples						and teams					
1	Э				🕎 Simu	lation						I-Sampi	5 N-5				
2)				<u>Q</u> uali	ity Control						2 Indepe	ndent Sample:	B			

 Masukkan variabel "rangking" pada kotak "Test Variable List", masukkan variabel "metode" pada kotak "Grouping Variable" dan pilih uji Mann Whitney U pada kotak Test Type.

Two-Independent-Samples Tests
Test Variable List Exact Options Grouping Variable: Test Type Kolmogorov-Smirnov Z Mann-Whitney U Kolmogorov-Smirnov Z Mages extreme reactions Vald-Wolfowitz runs OK Paste Reset Cancel Help

5. Klik *Define Groups*, masukkan nilai variabel metode pada kotak Group 1 dan 2.

🙀 Two Independent Samples: 💌
Group <u>1</u> : 1
Group <u>2</u> : 2
Continue Cancel Help

6. Klik Continue, sehingga kembali ke kotak dialog Two Independent Samples Test.

7. Klik OK

Hasil analisis dengan SPSS sebagai berikut.

	Ranks										
	metode	Ν	Mean Rank	Sum of Ranks							
rangking	1.00	9	7.22	65.00							
	2.00	4	6.50	26.00							
	Total	13									

Гest	Statistics ^a	
LCSL	Statistics	

	rangking
Mann-Whitney U	16.000
Wilcoxon W	26.000
Z	309
Asymp. Sig. (2-tailed)	.757
Exact Sig. [2*(1-tailed Sig.)]	.825 ^b

a. Grouping Variable: metode b. Not corrected for ties.

Keterangan:

- Ho : tidak ada perbedaan nilai tes siswa yang diajar dengan metoda A dan yang diajar dengan metoda B.
- Ha : ada perbedaan nilai tes siswa yang diajar dengan metoda A dan yang diajar dengan metoda B.

Hasil Analisis SPSS	Keterangan
Jika Asymp Sig (2-tailed) > α	Ho diterima
Jika Asymp Sig (2-tailed) $< \alpha$	Ho ditolak

Berdasarkan hasil analisis, tingkat kepercayaan 95% ($\alpha = 5\%$)

Asymp Sig (2-tailed) = $0.757 > \alpha = 0.050$, sehingga Ho diterima.

Kesimpulan: tidak ada beda nilai tes siswa yang diajar dengan metoda A dan yang diajar dengan metoda B.

----B-----

E. Tugas

 Kepala Sekolah di SMP X Maju Prestasi melakukan penelitian untuk mengetahui apakah ada perbedaan/tidak dalam tingkat kedisiplinan siswa di sekolahnya dalam bentuk Gerakan Disiplin Sekolah (GDS) yaitu SMP Kelas VI, Kelas VII, dan Kelas IX. Sampel diambil sebanyak 625 siswa yang menyebar Kelas VI = 225 siswa, Kelas VII = 225 orang, dan Kelas IX = 175 orang. Frekuensi Observasi dari 625 siswa tersebut dikelompokkan ke dalam tiga level disiplin (tinggi, sedang, dan rendah).

	Pel									
Siswa SMP	Tinggi	Sedang	Rendah	Total						
	(100-85)	(84-66)	(65-0)	l						
Kelas VI	100	75	50	225						
Kelas VII	50	150	25	225						
Kelas IX	125	25	25	175						
Jumlah	375	250	100	725						

Pelaksanaan GDS siswa SMP X Maju Prestasi

 Seorang peneliti ingin mengetahui, apakah terdapat perbedaan nilai tes siswa yang diajar dengan metoda A dan yang diajar dengan metoda B. Berikut data nilai siswa tersebut. Gunakan α = 5 %.

Nilai tes siswa yang diajar dengan metoda A : 76, 50, 87, 78, 55, 67, 63, 67, 60 Nilai tes siswa yang diajar dengan metoda B : 45, 59, 37, 81, 65

PRAKTIKUM 6 STATISTIK NONPARAMETRIK II

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan uji *Two Related Samples Test* dan *K-Independent Samples Test* data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Two Related Samples Test (Uji Wilcoxon) dan K-Independent Samples Test

Uji Two Related Samples pada hakikatnya sama dengan uji *Paired Sample T Test* dengan persyaratan yang lebih longgar. Kelonggaran tersebut yaitu: mampu digunakan baik untuk tipe data ordinal maupun scale, dan tidak mensyaratkan distribusi tertentu (normal). Uji ini digunakan untuk menguji perbedaan nilai variabel berpasangan atau berhubungan. Uji *Two Related Samples* yang akan dipelajari adalah Uji Wilcoxon. Uji Wilcoxon digunakan jika besar maupun arah perbedaan diperhatikan dalam menentukan apakah ada perbedaan nyata antara data pasangan yang diambil dari satu sampel atau sampel yang berhubungan.

K-Independent Samples Test di sebut juga uji Kuskal-Wallis pada hakikatnya sama dengan uji Anova dengan prasyarat yang lebih longgar. Kelonggaran prasyarat tersebut yaitu: mampu digunakan untuk data ordinal, dan distribusi variabel yang di uji tidak harus normal. Uji ini digunakan untuk menetapkan apakah nilai variabel tertentu berbeda pada dua atau lebih kelompok.

C. Two Related Samples Test (Uji Wilcoxon) dengan SPSS

Seorang guru mengadakan penelitian pengaruh model pembelajaran terhadap skor benar dari 10 siswa sebagai berikut. Ujilah apakah ada perbedaan pengaruh model pembelajaran terhadap skor benar dari siswa tersebut. Diketahui data tidak berdistribusi normal.

No	Sebelum	Sesudah
1.	1	4
2.	3	4
3.	2	3
4.	1	2
5.	2	5
6.	4	2
7.	1	1
8.	4	3
9.	2	3
10.	3	4

Penyelesaian dengan Aplikasi SPSS

1. Membuka aplikasi SPSS, pada "Variable View" isikan pada kolom Name: sebelum dan sesudah sebagaimana gambar berikut.

<u>F</u> ile	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nal	lyze (Direct <u>M</u> arketi	ng	<u>G</u> raphs	Ut	tilities	Add- <u>o</u> n	s <u>W</u> ind	wot	<u>H</u> elp
									<u>ب</u>		*			4	
		Nar	ne	Туре	V	Vidth	Decimals		Label		Val	ues	Miss	ing	Colum
1	I	sebelum		Numeric 8			2			None		None		8	
2	2	sesudah		Numeric 8			2				None		None		8

2. Pada "Data View", masukkan data yang akan dianalisis sebagaimana gambar berikut.

<u>F</u> ile	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> arketin	ig <u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp
				<u> </u>	~		R	H 🐮		4	
		sebelu	ım	sesudah	var	var	var	var	var	var	N 1
1			1.00	4.00							
2	!		3.00	4.00							
3			2.00	3.00							
4			1.00	2.00							
5			2.00	5.00							

3. Klik *Analyze => Nonparametric Test => Legacy Dialogs => 2-Related Samples* sebagaimana gambar berikut.

-														
Eile	Edit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Direct Marketing	Graphs	Utilities	Add- <u>o</u> ns	Window	<u>H</u> elp					
e				Reports	۰.	**			<u> </u>		ABC			
			•	Descriptive Statistics					1 🚽					
				Tables										
		sebelum	sesudah	Compare Means		var	var	var	var	var	var	var	var	var
	1	1.00	4.00	General Linear Model										
	2	3.00	4.00	Generalized Linear Mode	ls ▶									
	3	2.00	3.00	- Mixed Models										
	4	1.00	2.00	Correlate										
	5	2.00	5.00	Regression										
	6	4.00	2.00	Loginoar										
	7	1.00	1.00	Neural Networke										
	8	4.00	3.00	Closeite	í.									
	9	2.00	3.00	Classily Discontine Deduction	ĺ.									
	10	3.00	4.00	Dimension Reduction										
	11			Scale					1					
	12			Nonparametric Tests		💧 One Sa	ample							
	13			Forecasting	,	🧥 Indepe	ndent Sample	es						
	14			Survival		A Relate	d Samples							
	15			Multiple Response		Legac	Dialogs	- F	Chi-squar	e				
	16			🔛 Missing Value Analysis					Binomial					
	17			Multiple Imputation	•				Dura .					
	18			Complex Samples	•				muns					
	19			Simulation					1-Sample	K-S				
1	20			Quality Control					2 Indepen	dent Samples				
	21			ROC Curve					🔣 K Indepen	dent Samples				
	22					1			2 Related	Samples				
1	23								K Related	Samples				
1	24								-	-				

4. Blok variabel "sebelum dan sesudah" hingga aktif dan pindahkan ke kotak *Test Pair(s) List* dengan klik tombol panah sehingga muncul sebelum – sesudah pada kotak tersebut. Pada kotak *Test Type*, pilih uji *Wilcoxon*.

Two-Related-Samples Tests		×
	Test Pairs: Pair Variable1 Variable2 1 Ø [sebelum] Ø [sesudah] 2 Test Type Ø Wilcoxon 9 Sign Marginal Homogeneity V Paste Reset Cancel Help	

5. Klik OK.

Hasil analisis dengan SPSS sebagai berikut.

Ranks										
N Mean Rank Sum of Ranks										
sesudah - sebelum	Negative Ranks	2 ^a	5.25	10.50						
1	Positive Ranks	7 ^b	4.93	34.50						
	Ties	1 ^c								
	Total	10								

a. sesudah < sebelum

b. sesudah > sebelum

c. sesudah = sebelum Test Statistics^a

Test Statistics								
	sesudah - sebelum							
Z Asymp, Sig, (2-tailed)	-1.469 ^b .142							
/ lojp. e.g. (= loe.)	=							

a. Wilcoxon Signed Ranks Test

b. Based on negative ranks.

Keterangan:

H₀ : tidak ada perbedaan/ pengaruh model pembelajaran terhadap skor siswa. H_a

Hasil Analisis SPSS	Keterangan				
Jika Asymp Sig (2-tailed) $< \alpha$ (0.025)	Ho diterima				
Jika Asymp Sig (2-tailed) > α (0.025)	Ho ditolak				

ada perbedaan/ pengaruh model pembelajaran terhadap skor siswa.

Berdasarkan hasil analisis, tingkat kepercayaan 95% ($\alpha = 5\%$)

Asymp Sig (2-tailed) = $0.142 > \alpha = 0.025$, sehingga Ho ditolak.

Kesimpulan: ada perbedaan/ pengaruh model pembelajaran terhadap skor siswa.

D. K-Independent Samples Test dengan SPSS

Seorang guru IPA melakukan penelitian kelas. Guru tersebut ingin mengetahui apakah ada perbedaan prestasi belajar siswa yang diajar dengan strategi A, strategi B, dan strategi C. Setelah diadakan perlakuan hasilnya adalah sebagai berikut.

Strategi A	Strategi B	Strategi C				
36	50	62				
45	50	90				
59	40	45				
61	77	70				
	60	90				
	45					

Ujilah dengan uji statistik untuk mengetahui ada atau tidak perbedaan prestasi belajar antara siswa yang diajar stratehi A, B, dan C. Data tidak berdistribusi normal, $\alpha = 5$ %.

Penyelesaian dengan Aplikasi SPSS

1. Membuka aplikasi SPSS, pada "Variable View" isikan pada kolom Name: strategi dan prestasi sebagaimana gambar berikut.

ta *Untit	*Unitited1 [DataSet0] - IBM SPSS Statistics Data Editor											
<u>E</u> ile E	dit <u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze (Direct <u>M</u> arketii	ng <u>G</u> raphs <u>U</u> t	ilities Add- <u>o</u> n	s <u>W</u> indow	<u>H</u> elp				
🔁 H 🖨 💷 🗠 🛥 📓 📥 💷 👫 🖩 🖾 📟 🖧 🚟 🚜 🍛 👋												
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role	
1	strategi	Numeric	8	2		None	None	8	🔳 Right	\delta Nominal	💊 Input	
2	prestasi	Numeric	8	2		None	None	8	🚟 Right	🛷 Scale	🦒 Input	
3												
4												
5												
6												
7												

2. Pada "Data View", masukkan data yang akan dianalisis sebagaimana gambar berikut.

:

<u>F</u> ile	<u>E</u> dit	View Dat	a <u>T</u> ransform	Analyze	Direct Marketin	ng <u>G</u> raphs	Utilities	Add-ons	Window <u>H</u> e	lp				
6			📮 🗠 🦿	n 	*	۲.	1 🐮	<u> </u>	4	A	0	ABG		
16:s	trategi													
		strategi	prestasi	var	var	var	var	var	var	var	var	var	var	var
	1	1.0	0 36.00											
	2	1.0	0 45.00											
	3	1.0	0 59.00											
	4	1.0	0 61.00											
	5	2.0	0 50.00											
	6	2.0	0 50.00											
	7	2.0	0 40.00											
	8	2.0	0 77.00											
	9	2.0	0 60.00	1										
	10	2.0	0 45.00	1										
	11	3.0	0 62.00											
	2	3.0	0 90.00	1										
	13	3.0	0 45.00											
	14	3.0	0 70.00											
	15	3.0	0 90.00											
	10													

3. Klik Analyze => Nonparametric Test => Legacy Dialogs => K-Independent Samples sebagaimana gambar berikut.

Regots	File Ed	dit <u>V</u> i	ew <u>D</u> ata	Transform	Analyze	Direct Marketing	Graphs	Utilities	Add-on	is <u>W</u> i	indow	Help					
Descriptive Statistics Descriptive Statistics Descriptive Statistics 10:strategi prestain Tagles Compare Means Compare Means 2 100 45.00 General Linear Models Var Var </th <th></th> <th></th> <th>9 6</th> <th></th> <th>Report</th> <th>ts</th> <th>*</th> <th>*</th> <th></th> <th></th> <th>A</th> <th></th> <th>A</th> <th></th> <th>ABC</th> <th></th> <th></th>			9 6		Report	ts	*	*			A		A		ABC		
11: strategi prestasi Taglies i var var <th></th> <th></th> <th></th> <th>• -</th> <th>D<u>e</u>scri</th> <th>ptive Statistics</th> <th>•</th> <th>1 1 1 1 1 1</th> <th></th> <th></th> <th>-0</th> <th></th> <th>1 🔊</th> <th></th> <th></th> <th></th> <th></th>				• -	D <u>e</u> scri	ptive Statistics	•	1 1 1 1 1 1			-0		1 🔊				
strategiprestasiCompare leansvar </th <th>16 : strate</th> <th>gi</th> <th></th> <th></th> <th>Tables</th> <th>1</th> <th></th>	16 : strate	gi			Tables	1											
1 1 00 36.00 Generalized Linear Models Image: Single Singl			strategi	prestasi	Comp	are Means		var	va	r	var		var	var	var	var	var
2 1 00 45.00 Generalized Linear Models → I I	1		1.00	36.00	Gener	al Linear Model											
3 1.00 55.00 Migad Models ,	2		1.00	45.00	Gener	alized Linear Mod	dels 🕨										
4 1 00 61 00 Begression gorelate Begression , gorelate Begression <th>3</th> <th></th> <th>1.00</th> <th>59.00</th> <th>Mixed</th> <th>Models</th> <th></th>	3		1.00	59.00	Mixed	Models											
5 2.00 50.00 Regression Image: Sign sign sign sign sign sign sign sign s	4		1.00	61.00	Correl	ate											
6 2.00 50.00 Lgglinear Image: constraint rest in the second secon	5		2.00	50.00	Regre	ssion											
7 2.00 40.00 Neural Networks Image: Classify 8 2.00 60.00 Classify Image: Classify Image: Classify 9 2.00 60.00 Classify Image: Classify Image: Classify Image: Classify 10 2.00 45.00 Scale Image: Classify Image: Classi	6		2.00	50.00	Loglin	ear											
8 2.00 77.00 Classify	7		2.00	40.00	Neural	Networks	+										
9 2.00 60.00 Dimension Reduction Imparametric Tests	8		2.00	77.00	Class	fv.											
10 2.00 45.00 Sale > <	9		2.00	60.00	Dimen	sion Reduction											
11 3.00 62.00 Nonparametric Tests A One Sample 12 3.00 90.00 Nonparametric Tests A Independent Samples 13 3.00 45.00 Sunhal Multiple Response 14 3.00 70.00 Multiple Response Equar Dialogs If Comparametric Tests 16 90.00 Multiple Response Equar Dialogs If Comparametric Tests 16 90.00 Multiple Response If Complex If Complex 18 Complex Samples If Sample K.S If Sample K.S 19 If Gigmulation If Sample K.S If Sample K.S 20 If Control If Control If Sample K.S 21 If Control If Control If Sample K.S 22 If Control If Control If Sample K.S 22 If Control If Control If Control If Control 22 If Control If Control If Control If Control	10		2.00	45.00	Reale	Sion Reduction											
12 3.00 90.00 Europatient reaso A _0 ne@ sample 13 3.00 45.00 14 3.00 70.00 15 3.00 90.00 16 Image: Complex samples Image: Complex samples 16 Image: Complex samples Image: Complex samples 18 Image: Complex samples Image: Complex samples 19 Image: Complex samples Image: Complex samples 20 Image: Complex samples Image: Complex samples 20 Image: Complex samples Image: Complex samples 21 Image: Complex samples Image: Complex samples 22 Image: Complex samples Image: Complex samples 23 Image: Complex samples Image: Complex samples 23 Image: Complex samples Image: Complex samples 24 Image: Complex samples Image: Complex samples 23 Image: Complex samples Image: Complex samples 24 Image: Complex samples Image: Complex samples 23 Image: Complex samples Image: Complex samples 24 Image: Complex samples Image: Complex samples 23 Image: Complex samples Imag	11		3.00	62.00	Stale	comoleio Teolo											
13 3.00 45.00 Forecasing Independent Samples 14 3.00 700.00 Survival Related Samples 15 3.00 700.00 Survival Related Samples 16 Image: Survival Survival Survival Surviva	12		3.00	90.00	Nonba	rametric rests		A One S	ample								
14 3.00 70.00 Survail	13		3.00	45.00	Foreca	isting		/ Indep	endent S	amples							
15 3.00 90.00 Mgliple Response * Legacy Dialogs * Chi-square 16 * * Multiple Imputation * * Siliconnial * * 17 A Multiple Imputation *	14		3.00	70.00	Surviva	-		🗥 <u>R</u> elate	ed Samp	les							
16 Image: Second Sec	15		3.00	90.00	Multipi	e Response	,	Lega	cy Dialog	s	•	X	Chi-squar	e			
17 Multiple Imputation Imputation </th <th>16</th> <th></th> <th></th> <th></th> <th>🏭 Missin</th> <th>g Value Analysis.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>DVI F</th> <th>Binomial</th> <th></th> <th></th> <th></th> <th></th>	16				🏭 Missin	g Value Analysis.						DVI F	Binomial				
18 Complex Samples Image: Samples Image: Samples Image: Samples 19 Image: Samples Image: Samples Image: Samples 20 Image: Samples Image: Samples Image: Samples 21 Image: Samples Image: Samples Image: Samples 22 Image: Samples Image: Samples Image: Samples 23 Image: Samples Image: Samples Image: Samples 24 Image: Samples Image: Samples Image: Samples 23 Image: Samples Image: Samples Image: Samples 24 Image: Samples Image: Samples Image: Samples 23 Image: Samples Image: Samples Image: Samples 24 Image: Samples Image: Samples Image: Samples 23 Image: Samples Image: Samples Image: Samples 24 Image: Samples Image: Samples Image: Samples 25 Image: Samples Image: Samples Image: Samples 26 Image: Samples I	17				Mulţipl	e Imputation	•					5551 6	-				
19 Image: Second Sec	18				Comp	lex Samples	*						<u>1</u> una				
20 Quality Control Image and the gendent Samples 21 Image and the gendent Samples 22 Image and the gendent Samples 23 Image and the gendent Samples 23 Image and the gendent Samples 24 Image and the gendent Samples 25 Image and the gendent Samples 26 Image and the gendent Samples	19				🖶 Simula	tion							i-sample	K-S			
21 Image: Congent and Standpession 22 Image: Congent and Standpession 23 Image: Congent and Standpession 23 Image: Congent and Standpession 24 Image: Congent and Standpession 25 Image: Congent and Standpession 26 Image: Congent and Standpession 27 Image: Congent and Standpession 28 Image: Congent and Standpession 29 Image: Congent and Standpession 20 Image: Congent and Standpession 20 Image: Congent and Standpession 20 Image: Congent and Standpession 21 Image: Congent and Standpession 22 Image: Congent and Standpession	20				Quality	Control						1	2 Indepen	dent Samples.			
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21				ROC C	urve							< Indepen	ident Samples.			
23 M K Related Samples A M K Related Samples Data View Variable View	22							_				2	2 Related	Samples			
Tata New Variable New 100 Choice De	23											III F	< Related	Samples			
Data View Variable View		1															
Ladersdard Samela	Data Vie	w Va	iable View														
	Kindene	ndent S	amples														Statistics Pr

4. Masukkan variabel prestasi pada kotak Test Variable List, masukkan variabel strategi pada kotak Grouping Variable dan pilih Meidan

•	Tests for Several Independent Samples								
	Grouping Variable: strategi(13) Define Range Test Variable List Exact Options Define Range								
Test Type Kruskal-Wallis H ✓ Median Jonckheere-Terpstra OK Paste Reset Cancel Help									

 Klik Define Range, masukkan rentang nilai variabel strategi pada kotak Minimum (1) dan Maximum (3).

🙀 Several Independent Samp 💌								
Range for Grouping Variable								
Mi <u>n</u> imum: 1								
Ma <u>x</u> imum: 3								
Continue Cancel Help								

- 6. Klik Continue, sehingga kembali ke kotak dialog Test for Several Independent Samples.
- 7. Klik OK.

Hasil analisis dengan SPSS sebagai berikut.

Frequencies										
strategi										
		1.00	2.00	3.00						
Prestasi	> Median	1	2	4						
	<= Median	3	4	1						

Test Statistics^a

	Prestasi
Ν	15
Median	59.0000
Chi-Square	3.415 ^b
Df	2
Asymp, Sig.	.181

a. Grouping Variable: strategi b. 6 cells (100.0%) have expected frequencies less than 5. The minimum expected cell frequency is 1.9.

Keterangan:

Hipotesis

Ho : tidak ada perbedaan prestasi belajar antara siswa yang diajar strategi A, B, dan C

H1 : ada perbedaan prestasi belajar antara siswa yang diajar strategi A, B, dan C

Hasil Analisis SPSS	Keterangan
Jika Asymp Sig > α	Ho diterima
Jika Asymp Sig $< \alpha$	Ho ditolak

Berdasarkan hasil analisis, tingkat kepercayaan 95% ($\alpha = 5\%$)

Asymp Sig = $0.181 > \alpha = 0.05$, sehingga Ho diterima.

Kesimpulan: tidak ada perbedaan prestasi belajar antara siswa yang diajar strategi A, B, dan C.

E. Tugas

1. Seorang guru IPA melakukan penelitian kelas untuk mengetahui ada/tidak perbedaan prestasi belajar siswa yang diajar dengan metode A, metode B, dan metode C dengan data sebagai berikut.

Strategi A	Strategi B	Strategi C
46	60	52
55	60	80
69	50	35
71	87	60
59	70	80
	55	

Ujilah dengan uji statistik untuk mengetahui ada atau tidak perbedaan prestasi belajar antara siswa yang diajar stratehi A, B, dan C. Data tidak berdistribusi normal, $\alpha = 5$ %.

 Seorang guru mengadakan penelitian pengaruh model pembelajaran terhadap skor benar dari 15 siswa sebagai berikut. Ujilah apakah ada perbedaan pengaruh model pembelajaran terhadap skor benar dari siswa tersebut. Diketahui data tidak berdistribusi normal.

No	Pretest	Posttest
1.	1	4
2.	3	4
3.	2	3
4.	1	2
5.	2	5
6.	4	2
7.	1	1
8.	4	3
9.	2	3
10.	3	4
11.	4	1
12.	2	3
13.	3	3
14.	3	4
15.	3	5

PRAKTIKUM 7 UJI KORELASI

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan uji korelasi data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Uji Korelasi

Analisis korelasi merupakan metode statistik yang digunakan untuk mengukur besarnya hubungan linier antara dua variabel atau lebih. Nilai korelasi populasi (ρ) berkisar pada interval $-1 \le \rho \le 1$. Jika korelasi bernilai positif, maka hubungan antara dua variabel bersifat searah. Sebaliknya, jika korelasi bernilai negatif, maka hubungan antara dua variabel bersifat berlawanan arah. Misalkan korelasi sampel antara variabel X dan Y ($r_{X,Y}$) bernilai positif mengartikan bahwa jika nilai X naik maka nilai Y juga naik, sedangkan jika nilai X turun maka nilai Y juga turun. Misalkan korelasi sampel antara variabel X dan Y ($r_{X,Y}$) bernilai negatif mengartikan bahwa jika nilai X naik maka nilai Y juga turun, sedangkan jika nilai X turun maka nilai Y juga naik.

Nilai Korelasi Sampel (r)	Interpretasinya
0,00 - 0,09	Hubungan korelasinya diabaikan
0,10 - 0,29	Hubungan korelasi rendah
0,30 - 0,49	Hubungan korelasi moderat
0,50 - 0,70	Hubungan korelasi sedang
> 0,70	Hubungan korelasi sangat kuat

Tabel. Koefisien Korelasi dan Interpretasinya*

Korelasi *Pearson Product Moment* (r) merupakan analisis regresi yang sangat populer dan sering dipakai oleh mahasiswa dan peneliti. Analisis korelasi ini dikenalkan oleh Karl Pearson pada tahun 1900. Korelasi ini digunakan untuk mengetahui derajat hubungan dan kontribusi variabel bebas (*independent*) dengan variabel terikat (*dependent*). Teknik analisis Korelasi PPM termasuk teknik statistik parametrik yang menggunakan interval dan ratio dengan persyaratan data dipilih secara acak (random), datanya berdistribusi normal, data yang

50

dihubungkan berpola linier, dan data yang dihubungkan mempunyai pasangan yang sama sesuai dengan subjek yang sama.

Charles Spearman mengenalkan *koefisien korelasi tata jenjang* (*rank* –*order correlation coeficient*). Analisis ini digunakan untuk bahan atau data yang telah terkumpul atau dilaporkan berbentuk tata – jenjang, sehingga lebih mudah untuk melakukan analisis. Sebagai ilustrasi, seorang peneliti dalam aktivitas analisis mampu menyusun data yang selanjutnya dapat dibuat penjenjangan tanpa memperhatikan beda skor, maka kita dapat melakukan analisis dan memperoleh nilai r-nya dengan rumus yang lebih sederhana.

C. Uji Korelasi dengan SPSS

Berikut disajikan data nilai fisika matematika dan nilai fisika kuantum mahasiswa fisika FMIPA UNY.

Fisika Matematika	Fisika Kuantum
45	57
35	43
50	62
40	53
31	44
28	40
58	69
60	73
68	79
75	83

Ujilah apakah ada korelasi yang positif antara kemampuan Fisika Matematika dengan prestasi belajar Fisika Kuantum? (Gunakan taraf signifikansi 5%).

1. Prosedur Analisis

- a. Jalankan program SPSS 22, pilih Variable View di bagian bawah.
- b. Isikan di kolom *Name* "FisikaMatematika" di baris pertama dengan *decimals* bernilai
 2, dan "FisikaKuantum" di baris ke dua dengan *decimals* bernilai 2.

File	Edit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze E	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> n	s <u>W</u> indow	<u>H</u> elp	
					* =	i 📭 🗛		- S		A (14
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	1
1		FisikaMate	Numeric	8	2		None	None	8	🗏 Riç
2		FisikaKuant	Numeric	8	2		None	None	8	🗏 Riç

c. Pilih *Data View* dan masukan nilai Fisika Matematika dan Fisika Kuantum sebagai berikut.

File	Edit	<u>V</u> iew <u>D</u> ata	Transform	Analyze	Direct <u>M</u> arketir	ng <u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window I	Help
			🖡 🗠 r	>			h 👬		4	
4:										Visi
		FisikaMatem atika	FisikaKuantu m	var	var	var	var	var	var	var
1		45.00	57.00							
2	2	35.00	43.00							
3		50.00	62.00							
4		40.00	53.00							
5		31.00	44.00							
C		00.00	40.00							

- d. Pilih menu *Analyze* \rightarrow *Correlate* \rightarrow *Bivariate*.
- e. Masukkan variabel FisikaMatematika dan FisikaKuantum ke kotak Variables sehingga akan terlihat seperti berikut.

Bivariate Correlations	×
Variables: FisikaMatematika FisikaKuantum	Options Style Bootstrap
⊂ Correlation Coefficients	
Test of Significance <u>wo-tailed</u> One-tailed	
Flag significant correlations OK Paste Reset Cancel Help	

- f. Memilih jenis analisis: Pearson, Kendall's tau-b, atau Spearman. Dalam hal ini data dianalisis dengan menggunakan uji korelasi Pearson. Jika ingin memilih jenis yang lain bisa mengeklik tombo; tersebut.
- g. Klik tombol *Options* → *Means and Standard Deviation* → *Cross Product Deviations and Covariance* → *Continue*.
- h. Klik OK sehingga akan muncul hasil analisis.

Descriptive Statistics					
Mean Std. Deviation N					
FisikaMatematika	49.0000	15.97915	10		
FisikaKuantum	60.3000	15.44201	10		

	Correlations		
		FisikaMatematika	FisikaKuantum
FisikaMatematika	Pearson Correlation	1	.993**
	Sig. (2-tailed)		.000
	Sum of Squares and Cross- products	2298.000	2206.000
	Covariance	255.333	245.111
	Ν	10	10
FisikaKuantum	Pearson Correlation	.993**	1
	Sig. (2-tailed)	.000	
	Sum of Squares and Cross- products	2206.000	2146.100
	Covariance	245.111	238.456
	Ν	10	10

**. Correlation is significant at the 0.01 level (2-tailed).

2. Pembacaan Hasil Analisis

- a. Tabel **Descriptive Statistics** menampilkan hasil analisis statistik deskriptifnya seperti rata-rata per variabel, standar deviasi, dan jumlah sampel.
- b. Tabel Correlations, ada dua tanda dalam penafsiran korelasi melalui nilai koefisien, yaitu tanda (+) dan (-) yang berhubungan dengan arah korelasi, serta menyatakan kuat tidaknya korelasi.

Hipotesis Penelitian :

Ho : Tidak ada hubungan (korelasi) antara dua variabel.

H1 : Ada hubungan (korelasi) antara dua variabel.

Ketentuan	Jika Sig (2-tailed) > $\frac{1}{2} \alpha$, maka Ho diterima. Jika Sig (2-tailed) < $\frac{1}{2} \alpha$, maka Ho ditolak. Atau
	Jika t hitung < t tabel, maka Ho diterima. Jika t hitung > t tabel, maka Ho ditolak.

Pada tabel **Correlations** nilai Sig (2-tailed = 0,000) < $\frac{1}{2} \alpha$ (0,025) maka Ho di tolak. Jadi ada korelasi positif kemampuan fisika matematika dengan prestasi fisika kuantum semakin tinggi kemampuan fisika matematika semakin tinggi prestasi fisika kuantum.

Keterangan Tambahan

Dasar Pengambilan Keputusan dalam Uji Korelasi Spearman:

- Jika nilai sig. < 0,05 maka, dapat disimpulkan bahwa terdapat korelasi yang signifikan antara variabel yang dihubungkan.
- 2. Sebaliknya, Jika nilai sig. > 0,05 maka, dapat disimpulkan bahwa tidak terdapat korelasi yang signifikan antara variabel yang dihubungkan.

D. Tugas

 Suatu penelitian dilakukan untuk mengetahui apakah ada hubungan antara variabel tingkat religiusitas dengan tingkat kenakalan remaja. Penelitian dilakukan dengan mengambil sampel sebanyak 9 individu secara random. Data yang diperoleh dapat disusun dalam bentuk penjenjangan. Distribusi data sebagai berikut:

Var.X	12	11	13	14	15	16	19	17	18
Var.Y	20	21	18	19	17	14	13	15	11

Berdasarkan data tersebut lakukan analisis guna membuktikan hipotesis yang telah dirumuskan dengan taraf kesalahan sebesar 5%. Selanjutnya tentukan arah hubungan, kekuatan hubungan dan kontribusi X terhadap Y.

2. Berikut tersaji data tentang variabel X dan variabel Y.

 Var. X : 12
 9
 15
 8
 13
 12
 13
 12
 9
 9
 8
 10

 Var. Y : 5
 7
 3
 7
 5
 5
 4
 5
 6
 7
 6
 4

Berdasarkan data tersebut; (a). Rumuskan permasalahan penelitian; (b). Rumuskan hipotesisnya; (c). buktikan ada tidaknya hubungan; (d), tentukan arah hubungan; (e). Tentukan kekuatan hubungan dan (f). Tentukan kontribusi X terhadap Y.

PRAKTIKUM 8 ANALISIS REGRESI

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan analisis regresi data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Analisis Regresi

Persamaan regresi adalah persamaan matematik yang memungkinkan untuk meramalkan nilai-nilai suatu variabel terikat dari nilai-nilai satu atau lebih variabel bebas. Regresi ini dapat diterapkan pada semua jenis peramalan, dan tidak harus berimplikasi suatu regresi mendekati nilai tengah populasi.

Bila diberikan data contoh [(xi, yi); I = 1, 2 ... n], maka nilai dugaan kuadrat terkecil bagi parameter dalam garis regresi sederhana, yaitu :

$$\hat{y} = a + bx$$

Regresi linear ganda adalah persamaan regresi yang menggambarkan hubungan antara lebih dari satu peubah bebas (X) dan satu peubah tak bebas (Y) Hubungan peubah-peubah tersebut dapat dituliskan dalam bentuk persamaan:

		Y = a	$+ b_1 X_1 + b_2 X_2$
Y	: peubah tak-bebas	a	: konstanta
X_1	: peubah bebas ke-1	b_1	: kemiringan garis ke-1
X_2	: peubah bebas ke-2	b_2	: kemiringan garis ke-2

C. Uji Regresi dengan Aplikasi SPSS

Berikut disajikan data fasilitas belajar dan motivasi belajar terhadap prestasi belajar mahasiswa.

Fasilitas Belajar	Motivasi Belajar	Prestasi Belajar
10	8	89
8	6	85
6	6	78
6	4	74
4	6	69
4	10	70
8	10	85
6	8	71
10	12	92
2	6	56
4	4	67
4	4	66
6	9	78
10	9	90

Hitunglah berapa besarnya kontribusi bersama seluruh variabel bebas terhadap variabel terikatnya, ujilah apakah ada kontribusi tersebut signifikan, bagaimana persamaan garis regresinya, dan tafsirkan maknanya, serta ujilah pengaruh secara masing-masing variabel bebas secara parsial! (Gunakan taraf signifikansi 5%)

Prosedur Analisis

- 1. Jalankan program SPSS 22, pilih *Variable View* di bagian bawah.
- Isikan di kolom *Name* "Fasilitas" di baris pertama dengan *decimals* bernilai 2, "Motivasi" di baris ke dua dengan *decimals* bernilai 2, dan Prestasi di baris ke tiga dengan *decimals* bernilai 2.

File	<u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> arket	ing <u>G</u> raphs
			Ū.			📥 =	
		Nam	ne	Туре	Width	Decimals	Label
1	1	Fasilitas		Numeric	8	2	
2	2	Motivasi		Numeric	8	2	
3	3	Prestasi		Numeric	8	2	
4	ļ						
		1					
Data	View	Variable \	/iew				

3. Pilih *Data View* dan masukan nilai fasilitas belajar, motivasi belajar, dan prestasi sebagai berikut.

<u>F</u> ile <u>E</u> dit <u>V</u>	<u>/</u> iew <u>D</u> ata <u>T</u> i	ransform <u>A</u> nal	yze Direct <u>M</u> ar	keting <u>G</u>
🔁 🗄				
	Fasilitas	Motivasi	Prestasi	var
1	10.00	8.00	89.00	
2	8.00	6.00	85.00	
3	6.00	6.00	78.00	
4	6.00	4.00	74.00	
5	4.00	6.00	69.00	
6	4.00	10.00	70.00	
7	8.00	10.00	85.00	
8	6.00	8.00	71.00	

- 4. Lakukan analisis dengan menggunakan menu Analyze \rightarrow Regression \rightarrow Linear.
- 5. Masukkan variabel Prestasi ke kotak Dependent dan variabel Fasilitas dan Motivasi ke dalam kotak Independent(s) sehingga akan terlihat seperti berikut.

ta Linear Regression	and the second se	X
Fasilitas Motivasi	Dependent Prestasi Block 1 of 1 Previous Independent(s): Fasilitas Method: Enter Selection Variable: Case Labels: WLS Weight Paste Reset Cancel Help	Statistics Plots Save Options Style Bootstrap

6. Klik Ok sehingga muncul hasil analisis sebagai berikut.

Variables Entered/Removed ^a				
		Variables		
Model	Variables Entered	Removed	Method	
1	Motivasi, Fasilitas ^b		Enter	

a. Dependent Variable: Prestasi

b. All requested variables entered.

Model	Summary
-------	---------

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.978ª	.956	.948	2.44123

a. Predictors: (Constant), Motivasi, Fasilitas

			ANOVA ^a			
Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	1417.873	2	708.936	118.957	.000 ^b
	Residual	65.556	11	5.960		t
	Total	1483.429	13			

a. Dependent Variable: Prestasi

b. Predictors: (Constant), Motivasi, Fasilitas

	Coefficients ^a						
		The steep deciding		Standardized			
		Unstandardize	a Coefficients	Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	49.908	2.169		23.004	.000	
	Fasilitas	3.871	.314	.937	12.318	.000	
	Motivasi	.301	.322	.071	.935	.370	

a. Dependent Variable: Prestasi

Pembacaan Hasil Analisis

- a. Tabel *Model Summary* menunjukan beberapa hal sebagai berikut.
 - R = 0,978 artinya koefisien korelasinya sebesar 0,978. Angka ini menunjukkan derajad korelasi antara variabel fasilitas belajar dan motivasi belajar dengan prestasi belajar.
 - 2) R Square = 0,956 menunjukkan angka koefisien determinasinya (R²). Artinya variansi dalam prestasi dapat dijelaskan oleh fasilias belajar dan motivasi belajar melalui model sebesar 95,6 %, sisanya (3,4%) berasal dari variabel lain. Atau dengan bahasa sederhana besarnya kontribusi/sumbangan fasilias belajar dan motivasi belajar terhadap prestasi belajar adalah sebesar 95,6 %, sisanya 3,4 % berasal dari variabel lain.
 - Adjusted R square = 0,948. Ukuran ini maknanya sama dengan R square,hanya saja Adjusted R square ini nilainya lebih stabil karena sudah disesuaikan dengan jumlah variabel bebasnya.
 - 4) Standard Error of The Estimate = 2,44123 yang menunjukkan ukuran tingkat kesalahan dalam melakukan prediksi terhadap variabel terikat.
- b. Tabel **ANOVA**^a digunakan untuk menentukan taraf signifikansi atau linieritas dari regresi.

Hipotesis Penelitian (uji kelinieran) :

- Ho : Tidak terjadi hubungan linier antara variabel predictor (fasilitas belajar dan motivasi belajar) dengan variabel dependen (prestasi belajar).
- H1 : Terjadi hubungan linier antara variabel predictor (fasilitas belajar dan motivasi belajar) dengan variabel dependen (prestasi belajar).

	Jika F hitung > F tabel, maka Ho ditolak.
T Z - 4 4	Jika F hitung < F tabel, maka Ho diterima. Atau
Ketentuan	Jika Sig < α, maka Ho ditolak.
	Jika Sig > α , maka Ho diterima.

Berdasarkan tabel ketiga, diperoleh nilai Sig $(0,00) < \alpha$ (0,05), dengan demikian Ho ditolak. Dengan demikian ada hubungan linier antara variabel predictor (fasilitas belajar dan motivasi belajar) dengan variabel dependen (prestasi belajar).

c. Tabel Coefficients^a menginformasikan uji Coefficient dan uji konstanta.

Hipotesis Penelitian (uji koefisien fasilitas belajar) :

- Ho : koefisien fasilitas belajar tidak signifikan.
- H1 : koefisien fasilitas belajar signifikan.

	Jika t hitung > t tabel, maka Ho ditolak.
	Jika t hitung < t tabel, maka Ho diterima.
Ketentuan	Atau
	Jika Sig $< \alpha$, maka Ho ditolak.
	Jika Sig > α , maka Ho diterima.

Berdasarkan tabel keempat (baris Fasilitas), diperoleh nilai t hitung = 12,318 dan Sig = 0,00. Nilai sig (0,00) < α (0,05), dengan demikian Ho ditolak. Dengan demikian koefisien fasilitas belajar signifikan.

Hipotesis Penelitian (uji koefisien motivasi belajar) :

Ho : koefisien motivasi belajar tidak signifikan.

H1 : koefisien motivasi belajar signifikan.

	Jika t hitung > t tabel, maka Ho ditolak. Jika t hitung < t tabel, maka Ho diterima.
Ketentuan	Atau
	Jika Sig $< \alpha$, maka Ho ditolak.
	Jika Sig > α , maka Ho diterima.

Berdasarkan tabel keempat (baris Motivasi), diperoleh nilai t hitung = 0,935 dan Sig = 0,370. Nilai sig $(0,370) > \alpha$ (0,05), dengan demikian Ho diterima. Dengan demikian koefisien motivasi belajar tidak signifikan.

Hipotesis Penelitian (uji konstanta) :

- Ho : konstanta tidak signifikan.
- H1 : konstanta signifikan.

Ketentuan	Jika t hitung > t tabel, maka Ho diterima. Jika t hitung < t tabel, maka Ho ditolak. Atau
	Jika Sig < α, maka Ho diterima. Jika Sig > α, maka Ho ditolak.

Berdasarkan tabel keempat (baris Constant), diperoleh nilai t = 23,004 dan Sig = 0,00. Nilai sig (0,00) < α (0,05), dengan demikian Ho diterima. Dengan demikian konstanta tidak signifikan.

Model persamaan regresi diperoleh dari koefisien konstanta dan koefisien variabel yang ada di kolom **Unstandardized Coefficients B**. Berdasarkan tabel ini diperoleh model persamaan regresi : Prestasi (Y) = 49,908 + 3,871 x Fasilitas Belajar (X₁) + 0,301 x Motivasi Belajar (X₂) atau Y = .49,908 + 3,871 (X₁) + 0,301 (X₂).

D. Tugas

Berikut ini data mengenai pringkat kimia, nilai ujian dan frekuensi membolos dari kuliah kimia oleh mahasiswa IKIP Madiun.

Siswa	Peringkat Kimia	Nilai Ujian	Frekuensi Membolos
1	85	65	1
2	74	50	7
3	76	55	5
4	90	70	2
5	85	65	6
6	87	70	3
7	94	55	2
8	98	70	5
9	81	55	4
10	91	70	3
11	76	50	1
12	74	55	4

Tentukan persamaan garis regresinya dengan perhitungan matematis dan aplikasi SPSS!

PRAKTIKUM 9

VALIDITAS RELIABILITAS INSTRUMEN PENELITIAN

A. Tujuan

Setelah mempelajari modul praktikum ini mahasiswa diharapkan:

- 1. Memiliki kemampuan menggunakan SPSS untuk melakukan validitas dan reliabilitas data hasil penelitian.
- 2. Memiliki sikap kritis, kreatif, inovatif, dan mandiri serta cendekia dalam menyelesaikan beragam data hasil penelitian dengan menggunakan SPSS.

B. Validitas dan Reliabilitas

Syarat pokok yang harus dipenuhi untuk setiap alat ukur yang digunakan untuk mengukur variabel-variabel yang ingin diukur dalam penelitian adalah validitas dan reliabilitas. Validitas digunakan untuk mengetahui ketepatan dan kecermatan suatu instrumen tes/item pertanyaan yang diberikan kepada responden/ peserta tes. Item yang dapat mengukur apa yang hendak diukur merupakan item yang valid, sedangkan reliabilitas merujuk pada ketetapan/ keajegan alat tersebut dalam menilai apa yang diinginkan.

Reliabilitas merupakan kemampuan instrumen yang digunakan akan memberikan hasil yang relatif sama. Reliabilitas menunjukkan konsistensi dan stabilitas suatu skor dari suatu instrument pengukur. Reliabilitas berbeda dengan validitas karena reliabilitas membahas tentang masalah konsistensi, sedangkan validitas membahas tentang ketepatan. Suatu kuesioner dapat dikatakan *reliable* atau handal jika jawaban seseorang terhadap pertanyaan adalah konsisten atau stabil dari waktu ke waktu. Uji reliabilitas dimaksudkan untuk mengetahui konsistensi hasil pengukuran variabel. Untuk menentukan derajat reliabilitas tes, dapat digunakan kriteria sebagai berikut.

 $\begin{array}{ll} r_{1.1} \leq 0,20 & : \mbox{ sangat rendah} \\ 0,20 < r_{1.1} \leq 0,40 & : \mbox{ rendah} \\ 0,40 < r_{1.1} \leq 0,60 & : \mbox{ sedang} \\ 0,60 < r_{1.1} \leq 0,80 & : \mbox{ tinggi} \\ 0,80 < r_{1.1} \leq 1,00 & : \mbox{ sangat tinggi} \end{array}$

C. Uji Validitas dan Reliabilitas dengan SPSS

1. Uji Validitas

Validitas suatu butir pertanyaan dapat dilihat pada hasil output SPSS pada tabel dengan judul *Item-Total Statistic*. Kevalidan masing-masing butir pertanyaan dapat dinilai dari *Correlated Item-Total Correlation* masing-masing butir pertanyaan. Suatu variabel dikatakan valid apabila nilai *r*-*hitung* yang merupakan nilai dari *Correlated Item-total Correlation* > dari *r*. *tabel*. Nilai *r*-*tabel* dapat diperoleh melalui df (*degree of freedom*) = n – k, dimana n merupakan jumlah responden, dan k merupakan jumlah butir pertanyaan dalam suatu variabel. Alpha yang dipergunakan dalam penelitian adalah 5%.

Contoh

Perhatikan hasil rekap data kuisioner berikut. Tentukan validitas item aspek A nomor 1-12 dari hasil rekap kuisioner berikut!

		Mo	tivasi	Bela	ajar		Asa	al Da	erah				Gay	a Bela	jar									Fasili	itas B	elajar		-	Temai	n
Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	4	4	4	4	4	1	4	4	4	4	2	3	3	3	4	5	3	3	3	3	2	3	4	4	3	4	4	3	3	2
2	3	3	3	3	3	3	4	4	4	3	2	3	3	3	4	5	3	2	4	5	2	3	2	4	3	2	4	4	5	2
3	4	4	4	4	4	1	4	3	3	3	3	4	4	2	3	5	2	1	4	4	3	4	2	3	4	2	3	4	4	3
4	4	4	4	3	4	1	3	4	4	4	3	3	5	2	4	4	3	1	5	3	3	4	2	3	4	2	3	5	3	3
5	3	3	3	3	3	3	3	4	4	5	4	4	5	3	4	4	4	1	4	3	1	4	2	3	4	2	3	4	3	1
6	3	3	4	3	3	2	4	3	3	2	2	4	5	3	2	5	2	1	5	4	2	3	3	3	3	3	3	5	4	2
7	4	4	4	4	4	1	4	3	3	3	2	3	5	3	4	5	2	2	4	4	2	4	2	4	4	2	4	4	4	2
8	5	4	4	4	4	2	3	4	4	4	2	3	4	4	4	3	2	2	4	4	2	4	2	4	4	2	4	4	4	2
9	3	4	3	3	4	1	3	3	3	1	3	2	3	3	4	4	2	1	4	3	2	3	2	3	3	2	3	4	3	2
10	4	4	4	4	4	1	4	3	3	2	2	3	4	4	3	3	2	1	4	3	3	4	2	3	4	2	3	4	3	3
11	4	4	4	4	4	1	4	4	3	2	2	3	5	3	3	4	2	3	4	3	3	4	3	4	4	3	4	4	3	3
12	3	3	3	3	3	3	4	4	3	3	3	4	2	3	4	5	3	4	5	4	2	5	2	3	5	2	3	5	4	2
13	4	4	4	3	4	4	5	4	4	4	2	3	3	2	4	4	3	1	2	4	2	4	2	3	4	2	3	2	4	2
14	4	4	4	4	4	1	2	3	3	2	2	3	4	3	5	4	2	1	3	5	3	4	3	2	4	3	2	3	4	4
15	3	3	3	4	3	1	3	4	3	2	3	2	3	3	2	4	3	1	4	4	4	5	3	3	4	4	5	3	2	4
16	3	3	3	3	3	1	4	4	4	3	4	4	4	4	4	5	2	3	5	3	5	5	2	3	3	5	5	2	2	3
17	4	4	4	4	4	3	5	4	4	2	3	3	5	4	4	5	4	3	4	5	2	4	2	3	5	2	4	2	2	3
18	3	3	3	3	3	3	4	4	4	1	4	4	4	2	3	3	3	2	3	5	2	4	3	3	5	2	4	3	2	3
19	3	3	3	3	3	2	3	2	2	2	3	4	4	2	4	2	2	2	3	4	2	3	2	2	4	2	3	2	3	3
20	4	3	4	3	3	1	2	4	4	3	3	3	3	4	4	3	3	2	4	4	3	3	2	2	4	3	3	2	2	4
21	4	3	3	3	3	1	3	0	0	2	3	3	4	4	3	4	3	3	4	4	2	4	2	3	4	2	4	2	2	4
22	4	4	4	4	4	1	4	4	4	1	4	4	5	2	4	4	3	1	5	3	3	4	2	3	3	3	4	2	2	3
23	3	3	4	4	3	3	5	3	5	3	4	4	5	3	4	4	4	1	4	3	1	4	2	3	3	1	4	2	2	3
24	4	3	4	4	3	3	4	5	2	3	3	4	5	3	2	5	2	1	5	4	2	3	3	3	4	2	3	3	3	4
25	4	4	4	4	4	2	3	5	2	2	4	4	5	3	4	5	2	2	4	4	2	4	2	4	4	2	4	2	2	3
26	4	4	4	4	4	2	3	4	2	1	4	4	4	4	4	3	2	2	4	4	2	4	2	4	4	2	4	2	2	3

Tabel Hasil Rekap Data Kuisioner

27	4	4	4	4	4	2	4	4	3	2	3	3	4	3	5	3	3	1	4	5	4	5	2	3	4	5	4	5	2	3
28	2	2	3	2	2	3	4	4	2	3	3	4	4	5	5	4	1	2	3	5	2	4	2	3	3	5	2	4	2	3
29	4	4	4	4	2	2	4	3	2	2	4	4	3	3	4	5	2	1	3	5	2	4	3	2	3	5	2	4	3	2
30	4	4	4	3	3	1	3	3	3	2	4	3	3	3	4	4	2	1	4	3	2	3	2	3	4	3	2	3	2	3

Penyelesaian

Buka aplikasi SPPS dan pilih variable view di bagian bawah kiri. Ketik A1 sampai dengan A12 pada kolom name untuk pertanyaan kuisioner aspek A. Isikan pada kolom label yaitu pertanyaan 1 sampai dengan pertanyaan 12.

<u>File</u>	dit ⊻iew <u>D</u> ata	Transform	Analyze (Direct <u>M</u> arket	ing <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> r	is <u>W</u> indow	Help			
	H 🖨 🗉		× 🖺	* =			- A	1	M 🕢 🌑	AB6	
	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	A1	Numeric	8	0	pertanyaan 1	None	None	8)疆 Right	🚓 Nominal	🔪 Input
2	A2	Numeric	8	0	pertanyaan 2	None	None	8	疆 Right	🚓 Nominal	S Input
3	A3	Numeric	8	0	pertanyaan 3	None	None	8	🖷 Right	🚓 Nominal	S Input
4	A4	Numeric	8	0	pertanyaan 4	None	None	8	🖷 Right	🚓 Nominal	S Input
5	A5	Numeric	8	0	pertanyaan 5	None	None	8	🖷 Right	🚓 Nominal	S Input
6	A6	Numeric	8	0	pertanyaan 6	None	None	8	I Right	🚓 Nominal	🔪 Input
7											
8											
9											

b. Klik Data View dan masukkan data hasil kuisioner A1 sampai A12.

File	Edit	View	Data	Transform	n <u>A</u> r	alyze	Direct <u>M</u> a	rketing	Graphs	Utilities	Add-o	ns <u>W</u> ir	ndow	Help						
			110			177							A		A	0		ABC		
					_								-6		1 ન	U	-			
1:																				
		A1		A2		A3	A	4	A5	A	٨6	var		var		var		var	var	
	1		4		4		4	4		4	1									
	2		3		3		3	3		3	3									
	3		4		4		4	4		4	1									
- 4	1		4		4		4	3		4	1									
	5		3		3		3	3		3	3									
	5		3		3		4	3		3	2									
			4		4		4	4		4	1									
	5		5		4		4	4		4	2									
	•		3		4		3	3		4	1									
	1		4		4		4	4		4	1									
	2		4		4		3	4		3	3									
	2		4		4		4	3		4	4									
	4		4		4		4	4		4	1									
	5		3		3		3	4		3	1									
1	6		3		3		3	3		3	1									
1	7		4		4		4	4		4	3									
1	8		3		3		3	3		3	3									
1	9		3		3		3	3		3	2									
2	0		4		3		4	3		3	1									
2	1		4		3		3	3		3	1									
2	2		4		4		4	4		4	1									
2	3		3		3		4	4		3	3									
2	4		4		3		4	4		3	3									
2	5		4		4		4	4		4	2									
		4																		
Data	View	Variable	View																	

c. Klik menu Analyze, pilih Scale \rightarrow Reliability Análisis.

d. Pindahkan seluruh Pertanyaan, mulai A1 sampai A12 ke kotak item melalui tombol tanda panah diantaranya.

¢ a	Reliability Analysis	×
	tems:	Statistics
<u>M</u> odel: Scale label:	Alpha Alpha]

e. Klik tombol statistic, kemudian klik item, scale, dan scale if item deleted.

🔁 🛛 Reliability Analy	vsis: Statistics
 Descriptives for ✓ Item ✓ Scale ✓ Scale if item deleted 	Inter-Item Correlations
Summaries Means Variances Covariances Covariances	ANOVA Table © <u>N</u> one © <u>F</u> test © Friedman chi-sguare © Cochran chi-square
Hotelling's T-square Infractass correlation coefficient Mogel: Two-Way Mixed Confidence interval: 95 %	Tukey's test of additivity Type: Consistency Test value: 0
Continue Cano	Help

f. Selanjutnya klik continue dan Ok.

Hasil analisis dengan SPSS akan dihasilkan untuk validitas dapat di lihat di tabel *item-total statistics* sebagai berikut.

		Item-Total Statistic	S	
	Scale Mean if	Scale Variance if	Corrected Item-	Cronbach's Alpha
	Item Deleted	Item Deleted	Total Correlation	if Item Deleted
pertanyaan 1	16.00	3.310	.678	.437
pertanyaan 2	16.10	3.403	.700	.440
pertanyaan 3	15.97	3.689	.699	.470
pertanyaan 4	16.13	3.568	.606	.478
pertanyaan 5	16.20	3.476	.573	.480
pertanyaan 6	17.77	5.909	347	.900

- g. Menentukan nilai r-tabel dengan melihat nilai df (*degree of freedom*) = n k, dimana k adalah jumlah butir pertanyaan dalam suatu variabel, dan n merupakan jumlah responden. Maka df = 30-6 = 24. Tabel r *product – moment (two tailed test)* menunjukkan bahwa pada df 19 dengan alpha 5%, diperoleh *r table* sebesar 0,404.
- h. Membandingkan nilai r hitung dengan r tabel sebagai berikut.
 - 1) r_{hitung} A1 sebesar 0,678 > r_{table} 0,404, kesimpulan valid.

- 2) r_{hitung} A2 sebesar 0,700 > r_{table} 0,404, kesimpulan valid.
- 3) r_{hitung} A3 sebesar 0,699 > r_{table} 0,404, kesimpulan valid.
- 4) r_{hitung} A4 sebesar 0,606 > r_{table} 0,404, kesimpulan valid.
- 5) r_{hitung} A5 sebesar 0,573 > r_{table} 0,404, kesimpulan valid.
- 6) r_{hitung} A6 sebesar 0,347 < r_{table} 0,404, kesimpulan tidak valid.
- i. Menghapus pertanyaan yang tidak valid (nomor 6) dari variable view di SPSS (klik kanan pilih clear).

<u>File</u>	Edit	<u>V</u> iew <u>D</u> ata	Transform	Analyze E	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> n	is <u>W</u> indow	Help					
a	<u>≥ H ⊖ ¤ ∽ ~ X k = IP h II X = A =</u> ⊘ ● *													
		Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role		
1		A1	Numeric	8	0	pertanyaan 1	None	None	8	遭 Right	🚓 Nominal	S Input		
2		A2	Numeric	8	0	pertanyaan 2	None	None	8	🔳 Right	🚓 Nominal	🦒 Input		
3		A3	Numeric	8	0	pertanyaan 3	None	None	8	🔳 Right	\delta Nominal	🦒 Input		
4		A4	Numeric	8	0	pertanyaan 4	None	None	8	遭 Right	🚓 Nominal	🦒 Input		
5		A5	Numeric	8	0	pertanyaan 5	None	None	8	🗃 Right	🚓 Nominal	🦒 Input		
6		A6	Numeric	8	0	pertanyaan 6	None	None	8	🗮 Right	\delta Nominal	💊 Input		
7														
8														
9														

j. Melakukan uji validitas kembali untuk pertanyaan yang valid, seperti langkah langkah diatas. Hasil uji validitas untuk *Item Total Statistics* sebagai berikut.

Item-Total Statistics								
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item- Total Correlation	Cronbach's Alpha if Item Deleted				
pertanyaan 1	14.13	3.637	.808	.866				
pertanyaan 2	14.23	3.702	.855	.855				
pertanyaan 3	14.10	4.231	.734	.885				
pertanyaan 4	14.27	3.995	.693	.891				
pertanyaan 5	14.33	3.816	.695	.892				

- k. Menentukan nilai r-tabel dari pertanyaan yang valid melalui df (*degree of freedom*) = n
 k, dimana k merupakan jumlah butir pertanyaan dalam suatu variabel, dan n merupakan jumlah responden. Maka df = 30-5 = 25. Tabel *r product moment (two tailed test)* menunjukkan bahwa pada df 24 dengan alpha 5%, diperoleh *r table* sebesar 0,396.
- 1. Membandingkan nilai r_{hitung} dengan r_{tabel} dari tabel hasil analisis terakhir sebagai berikut.
 - 1) r_{hitung} A2 sebesar 0,808 > r_{table} 0,396, kesimpulan valid.
 - 2) r_{hitung} A5 sebesar 0,855 > r_{table} 0,396, kesimpulan valid.
 - 3) r_{hitung} A6 sebesar 0,734 > r_{table} 0,396, kesimpulan valid.
 - 4) r_{hitung} A7 sebesar 0,693 > r_{table} 0,396, kesimpulan valid.
 - 5) r_{hitung} A8 sebesar 0,695 > r_{table} 0,396, kesimpulan valid.

m. Menyimpulkan bahwa tujuh indikator pertanyaan variabel A yaitu motivasi dalam riset pembelajaran IPA di SMP kelas 7 memiliki r_{hitung} yang lebih besar dari nilai r_{table} telah valid.

Keterangan

Uji validitas terhadap seluruh variabel, yaitu seluruh pertanyaan-pertanyaan pada aspek B, C, dan D dengan cara yang sama dengan yang diatas.

2. Uji Reliabilitas

Langkah uji reliability sama dengan langkah uji validitas. Poin yang berbeda adalah *output* SPSS yang menjadi dasar penilaian validitas dengan *output* SPSS yang menjadi dasar penilaian Reliabilitas. Uji validitas dilakukan dengan memperhatikan output *Item total statistik*, sedangkan uji reliabilitas dengan memperhatikan *output Reliability Statistics* pada kolom *Cronbach's Alpha*. Reliabilitas suatu konstruk variabel dikatakan baik jika memiliki nilai *Cronbach's Alpha* > dari 0,60.

Contoh

Dengan menggunakan data pada contoh 5, tentukan nilai reliabilitas instrumen untuk aspek A.

Penyelesaian

1. Buka aplikasi SPSS dan masukkan data variabel A yang sudah valid, seperti terdapat pada contoh 5.

da						*Untit	led2.sav [Dat	aSet1] - IBM S	SPSS Statis	tics Data Edito	r Shu	rook:05:28:13 F
File	Edit	View Dat	a <u>T</u> ransform	Analyze	Direct <u>M</u> arketi	ng <u>G</u> raphs <u>U</u>	tilities Add- <u>o</u> r	ns <u>W</u> indow	Help			
6	😑 🗄 🖨 📭 🗠 🖉 🚣 🗊 🗰 🏙 💹 📰 🖄 🚟 🚚 ⊘ 🧠 🦇											
		Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
	1	A1	Numeric	8	0	pertanyaan 1	None	None	8	🚟 Right	\delta Nominal	🦒 Input
	2	A2	Numeric	8	0	pertanyaan 2	None	None	8	🗃 Right	🚓 Nominal	🦒 Input
	3	A3	Numeric	8	0	pertanyaan 3	None	None	8	🗮 Right	\delta Nominal	🦒 Input
	4	A4	Numeric	8	0	pertanyaan 4	None	None	8	遭 Right	🚴 Nominal	S Input
	5	A5	Numeric	8	0	pertanyaan 5	None	None	8	🔳 Right	\delta Nominal	🦒 Input
	6											
	7											
	8											
	9											
	10											

2. Klik menu *analyze* pilih *scale*, kemudian klik *realiability analysis*.

<u>F</u> ile	Edit	View	Data	Transform	Analyze	Direct <u>M</u> arketin	ig <u>G</u> raphs	i l	<u>J</u> tilities	Add-on	is <u>W</u> indow	Help			
2			11		Repo Desc	orts criptive Statistics	۲ ۲		×.	¥	- S		4 🖉 🌑	ABG	
		Nan	ne	Type	Table	es	•		Va	lues	Missing	Columns	Align	Measure	Role
	1	A1		Numeric	Com	pare Means	•		None		None	8	🔳 Right	💑 Nominal	🦒 Input
:	2	A2		Numeric	Gene	ral Linear Model	•		None		None	8	🔳 Right	\delta Nominal	🔪 Input
:	3	A3		Numeric	Gene	ralized Linear M	dale 🖡		None		None	8	🔳 Right	\delta Nominal	🔪 Input
4	4	A4		Numeric	Mixou	d Modele			None		None	8	🔳 Right	\delta Nominal	🔪 Input
	5	A5		Numeric	One	a models	í.		None		None	8	🚟 Right	\delta Nominal	🔪 Input
(6				Com	erate									
1	7				Regr	ession									
1	8				Logii	near									
	9				Neur	al Net <u>w</u> orks									
1	0				Clas	sify	•								
1	1				Dime	ension Reduction	ı ≯								
1	2				Scale	e	•		Reliat	ility Anal	ysis				
1	3				Nont	parametric Tests	•	E	🗄 Multidi	mensior	nal Unfolding (F	REFSCAL)			
1	4				Fore	casting	•	E	🗄 Multidi	mensior	nal Scaling (PR	OXSCAL)			
1	5				Survi	val	•		Z Multidi	maneior	al Scaling (Al	CAL)			
1	6				Multi	ple Response	•	4	al monut	menator	far ocaning (AL)	50/NE)			
1	7				🔣 Missi	ng Value Analysi	S								
1	8				Multi	ple Imputation	+								
1	9				Com	plex Samples	•								
2	!0				🗒 Simu	lation									
2	1				Qual	ity Control									
2	2					Cupio									
2	3				KUC	Guive									
2	4														

3. Memindahkan seluruh pertanyaan ke kolom item dengan menggunakan tombol tanda panah yang berada diantaranya.

te	×	
Model: Alpha T Scale label: OK	Items: pertanyaan 1 [A1] pertanyaan 2 [A2] pertanyaan 3 [A3] pertanyaan 4 [A4] pertanyaan 5 [A5] Paste Reset Cancel Help	Statistics)

4. Klik tombol statisitik, kemudian aktifkan *item, scale, dan scale if item deleted.*

Reliability Analysis: Statistics							
Descriptives for tem Scale Scale if item deleted	Inter-Item Corre <u>l</u> ations Covarianc <u>e</u> s						
Summaries Means Variances Covariances Correlations	ANOVA Table <u>N</u> one <u>F</u> test Friedman chi-sguare Coc <u>h</u> ran chi-square						
Hotelling's T-square Intractass correlation coefficient Model: Two-Way Mixed Confidence interval: 95 %	Tu <u>k</u> ey's test of additivity Ty <u>p</u> e: Consistency Test value: 0						
Continue Cancel Help							

5. Klik continue dan OK.

Hasil output SPSS dapat dilihat di tabel realibility statistics sebagai berikut.

Reliability Statistics
Cronbach's Alpha	N of Items
.900	5

Pengukuran yang reliabel akan menunjukkan instrumen yang dapat menghasilkan data yang dipercaya. Reliabilitas suatu konstruk variabel dikatakan baik jika memiliki nilai *Cronbach's* Alpha > dari 0,60. Maka berdasarkan hasil ini dapat dilihat bahwa *Cronbach's Alpha* 0.900 > dari 0,60. Hal ini berarti jawaban responde untuk variabel A sudah reliabel.

Keterangan

Uji reliabilitas terhadap seluruh variabel, yaitu seluruh pertanyaan-pertanyaan pada aspek B, C, dan D dengan cara yang sama dengan yang diatas.

D. Tugas

1. Berikut adalah hasil uji coba instrumen penelitian dalam bentuk angket. Ujilah validitas dan reliabilitas instrumen yang digunakan!

Responden	No Pertanyaan Skore													
	1	2	3	4	5	6	7	8	9	10	11	12		
1	4	4	4	4	4	1	4	4	4	4	2	3		
2	3	3	3	3	3	3	4	4	4	3	2	3		
3	4	4	4	4	4	1	4	3	3	3	3	4		
4	4	4	4	3	4	1	3	4	4	4	3	3		
5	3	3	3	3	3	3	3	4	4	5	4	4		
6	3	3	4	3	3	2	4	3	3	2	2	4		
7	4	4	4	4	4	1	4	3	3	3	2	3		
8	5	4	4	4	4	2	3	4	4	4	2	3		
9	3	4	3	3	4	1	3	3	3	1	3	2		
10	4	4	4	4	4	1	4	3	3	2	2	3		
11	4	4	4	4	4	1	4	4	3	2	2	3		
12	3	3	3	3	3	3	4	4	3	3	3	4		
13	4	4	4	3	4	4	5	4	4	4	2	3		
14	4	4	4	4	4	1	2	3	3	2	2	3		
15	3	3	3	4	3	1	3	4	3	2	3	2		
16	3	3	3	3	3	1	4	4	4	3	4	4		
17	4	4	4	4	4	3	5	4	4	2	3	3		
18	3	3	3	3	3	3	4	4	4	1	4	4		
19	3	3	3	3	3	2	3	2	2	2	3	4		
20	4	3	4	3	3	1	2	4	4	3	3	3		

2. Berikut disajikan hasil uji coba instrumen soal dalam bentuk pilihan ganda. Ujilah validitas dan reliabilitas instrumen soal tersebut.

Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
В	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0
С	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	0	1	1	1	1	0	0	0
Е	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
F	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
G	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Н	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Ι	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
J	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
K	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
L	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
М	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Ν	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
О	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0
Р	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Q	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
R	1	1	1	1	1	1	1	0	1	1	1	1	1	0	0
S	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Т	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1
U	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
V	0	1	1	1	1	1	1	0	1	1	1	1	1	0	1
W	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1
Х	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1
Y	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1
Z	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1
AB	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1

DAFTAR PUSTAKA

- Arif Pratisto. 2004. Cara Mudah Mengatasi Masalah Statistik dan Rancangan Percobaan dengan SPSS. Jakarta: Gramedia.
- Ali Muhson. Pelatihan Analisis Statistik dengan SPSS. Yogyakarta : FE UNY.
- Bambang Kustituanto & Rudy Badrudin. 1994. *Statistika 1 (Deskriptif)*. Jakarta: Gunadarma.
- Bambang Subali & Pujiati Suyata. 2012. *Pengembangan Item Tes Konvergen dan Divergen*. Yogyakarta: Diandra.
- Dadan Rosana. 2012. *Applied Statistics for Educational Research*. Yogyakarta: FMIPA UNY.
- E.Walole, Ronald. 2000. Pengantar Statistika. Jakarta : Gramedia.
- Fathor Rachman Utsman. 2015. Panduan Statistika Pendidikan. Wonosasri : Diva Press.
- Gunardi & A. Rakhman. 2003. Metode Statistika. Yogyakarta : FMIPA UGM.
- Hoel, P.G. 1971. Introduction Mathematical Statistics. New York: John Wiley & Sons.
- Kanji, Gopal K. 2006. 100 Statistical Test 3rd Edition. Great Britanian: The Cromwell Press Ltd.
- Lind, D.A; Marchal, W.G,& Wathen, S.A. 2007. Statistical Techniques in Business and Economic with Global Data Sets, 13th ed. New York: McGraw-Hill Companies, Inc.
- Luhut P Panggabean. 2001. Statistika Dasar. Bandung: UPI.
- Paulson, Daryl S. 2003. *Applied Statistical Designs for The Reseracher*. New York: Marcel Dekker, Inc
- Purbaya Budi Santosa & Ashari. 2005. *Analisis Statistik dengan Ms. Excel dan* SPSS. Yogyakarta: Andi.